
1 of 9

1.
2.

Command line utilities for Exporting of Solutions and Unit
Testing

Servoy allows you to export workspace solutions into .servoy files or .war files as well as to run jsunit tests on these using command line.

NGClient, WebClient and Smart Client ".war" export

This exporter will export NGClient, WebClient and SmartClient solutions as .war files. There is also an exporter specific for mobile typed solutions that also
generates a .war file but that one is separate is is detailed later.

To see the help message do the following:

Change the current directory to <servoy_install>\developer\exporter
execute (.bat/.sh depends on your OS): war_export.bat -help

This will output the help for the Command Line War Export Application. To do a war export a command similar to the following should be executed:

war_export.bat -s <solution_name> -o <out_dir> -data <workspace_location> -defaultAdminUser <admin username> -
defaultAdminPassword <admin password> [optional_args]

Output of "war_export.bat -help" is:

WAR exporter. Exports workspace solutions into .war files.
USAGE:

 -help or -? or /? or no arguments ... shows current help message.

 OR

 -s <solution_name> -o <out_dir> -data <workspace_location>
 Note: <solution_name> can also contain multiple solution names separated by comma. In
 that case, one .war file will be generated for each solution in that list. Some of
 the options below (for example -warFileName) do not make sense when multiple .war
 files are to be created. There is a note on each such option.

 -defaultAdminUser <user name for admin page when no admin user exists>
 -defaultAdminPassword <password for defaultAdminUser> [optional_args]

 Optional arguments:

 -verbose ... prints more info to console
 -p <properties_file> ... path and name of properties file used to start exporter.
 Default: the 'servoy.properties' file from 'application_server' will be used.
 -as <app_server_dir> ... specifies where to find the 'application_server' directory.
 Default: '../../application_server'.
 -pl alternate project locations; solution, resources and other needed projects will
 be searched for in subfolders (deep) of the given 'workspace_location' as well.
 For example: if the
 workspace needs to contain projects from different git repositories, those can
 be checked out in '<workspace_loc>', '<workspace_loc>/a', '<workspace_loc>/b/c'
 and so on.
 -ie ignore build errors. CAUTION! the use of this flag is discouraged; it can cause
 invalid solutions to be exported.
 -sb skip build. No build markers will be generated. This can greatly decrease
 export time. CAUTION! the use of this flag is discouraged;

2 of 9

 it can cause invalid solutions to be exported.
 -dbi ... export based on dbi files (even if database servers are available)
 -active <true/false> ... export given solution (and its modules) as part of .war.
 That means the (current if more) solution from -s parameter and its modules.
 If false, it will create a war with no solution included. If false, you will
 have to import solutions using the admin page. It does not make sense to use
 false if multiple solutions were given at -s.
 Default: true
 -pfw <properties_file> ... path & name of properties file to be included in the war.
 Default: the 'servoy.properties' file from 'application_server' will be used.
 -b <bean_names> ... the space separated list of (smart / web client) beans to export
 Default: all beans from application_server/beans are exported.
 You can use '-b <none>' to avoid exporting beans.
 -excludeBeans <bean_names> ... the list of beans to excluded from the export e.g.:
 -excludeBeans bean1.jar bean2.zip
 Default: none is excluded.
 -l <lafs_names> ... the space separated list of look-and-feels (smart cl.) to export
 Default: all lafs from application_server/lafs are exported.
 You can use '-l <none>' to avoid exporting lafs.
 -excludeLafs <lafs_names> ... the list of lafs to be excluded from the export e.g:
 -excludeLafs laf1.jar laf2.zip
 Default: none is excluded.
 -d <jdbc_drivers> ... the space separated list of jdbc (database) drivers to export
 Default: all drivers from application_server/drivers are exported.
 You can use '-d <none>' to avoid exporting drivers.
 -excludeDrivers <jdbc_drivers> ... the list of drivers to exclude from the export
 e.g.: -excludeDrivers driver1.jar driver2.zip
 Default: none is excluded.
 -pi <plugin_names> ... the list of plugins to export e.g -pi plugin1.jar plugin2.zip
 Default: all plugins from application_server/plugins are exported.
 You can use '-pi <none>' to avoid exporting plugins.
 -excludePlugins <plugin_names> ... the list of plugins to exclude from the export
 e.g.: -excludePlugins plugin1.jar plugin2.zip
 Default: none is excluded.
 -nas ... space separated list of solutions that must be exported but are not in the
 current solution's modules (for example solutions for batch processors).
 If active is false no solution will be exported in war. It might be wrong to
 use this flag if you also specify multiple solutions in -s.
 Default: only active solution and its modules are exported.
 -pluginLocations <ABSOLUTE paths to developer 'plugins' folder> ... needed in case
 you don't run the exporter from [servoy_install]/developer/exporter
 Default: '../plugins'.
 -crefs ... exports only the components used by the (current if -s has more) solution
 -crefs <additional_component_names> ... can be 'all' (without the ') or a list of
 components separated by spaces; exports the components used by the solution
 (current if -s has more) and the components in this additional components list.
 Default: only the used components exported.
 -excludeComponentPkgs ... space separated list of excluded component packages (from
 all available component packages).
 Default: none is excluded.
 -srefs ... exports only the services used by the (current if -s has more) solution
 -srefs <additional_service_names> ... can be 'all' (no ') or a list of services
 separated by spaces; exports the services used by the (current if -s has more)
 solution and the services in this additional services list.
 Default: only the used services are exported.
 -excludeServicePkgs ... space separated list of excluded service packages (from all
 available service packages).
 Default: none is excluded.
 -md ... export metadata tables (tables marked as metadata); uses the metadata stored
 in workspace files for each metadata table.
 -checkmd ... check that metadata for metadata tables is the same for each table both
 in the according workspace file and in the actual table in the database before
 exporting; this only makes sense if -md was specified
 Default: false
 -sd ... exports sample data. IMPORTANT all needed DB servers must already be started
 -sdcount <count> ... number of rows to export per table. Only makes sense when -sd
 is also present. Can be 'all' (without the ') in which case it will still be
 limited but to a very high number: 49999999
 Default: 5000
 -i18n ... exports i18n data
 -users ... exports users
 -tables ... export all table information about tables from referenced servers.
 IMPORTANT: all needed DB servers must already be started

3 of 9

 -warFileName ... the name of the war file; do *NOT* use this if multiple solutions
 were given in -s argument (it does not make sense then as multiple wars will be
 generated).
 Default: the (current if -s has more) solution name
 -overwriteGroups ... overwrites Groups
 -allowSQLKeywords ... allows SQLKeywords
 -stopOnDataModelChanges ... stops import if data model changes.
 This option is ignored if allowDataModelChanges is present.
 -allowDataModelChanges ... (optionally) a space separated list of server names that
 allow data model changes. If the list is missing, then data model changes are
 allowed on all servers.
 -skipDatabaseViewsUpdate... skips database views update
 -overrideSequenceTypes ... overrides Sequence Types
 -overrideDefaultValues ... overrides Default Values
 -insertNewI18NKeysOnly ... inserts NewI18NKeysOnly
 -importUserPolicy ... 0/1/2 where:
 don't = 0
 create users & update groups = 1 (default)
 overwrite completely = 2
 -addUsersToAdminGroup ... adds Users To Admin Group
 -updateSequences ... updates Sequences
 -upgradeRepository ... automatically upgrade repository if needed
 -contextFileName ... a path to a tomcat context.xml that should be included
 into the WAR/META-INF/context.xml
 -useAsRealAdminUser ... the default admin user login given via -defaultAdminUser
 above will be available as a normal admin user in solutions as well.
 -license.company_name OR license.<i>.company_name,
 The name of the company that has the license, where <i> is used when there are
 multiple licenses:
 -license.1.company_name name1 -license.2.company_name name2
 -license.code OR license.<i>.code,
 The license code, where <i> is used when there are multiple licenses:
 -license.1.code XXXX-XXXX-XXXX -license.2.code XXXX-XXXX-XXXX
 -license.licenses OR license.<i>.licenses,
 The number of licenses, where <i> is used when there are multiple licenses:
 -license.1.licenses SERVER -license.2.licenses 1000
 -userHomeDirectory <user_home_directory> ... this must be a writable directory where
 Servoy application related files will be stored; if not set, then the system
 user home directory will be used.
 -doNotOverwriteDBServerProperties ... SKIP overwrite of old DBserver properties - if
 they were stored separately by a previously deployed war (due to changes to
 properties via admin page) - with ones from the war export's servoy.properties.
 If -overwriteAllProperties below is set then this flag has no effect. Prior to
 Servoy 2019.09, '-overwriteDBServerProperties' was used instead but it is now
 removed in order to have the same default value as in UI export wizard.
 -overwriteAllProperties ... overwrite all (potentially changed via admin page)
 properties of a previously deployed war application with the values from the
 servoy.properties of this war export.
 -log4jConfigurationFile ... a path to a log4j configuration file that should be
 included nstead of the default one.
 -webXmlFileName ... a path to a web.xml that should be included instead of default
 one; it should be a web.xml file previously generated via a Servoy WAR export.
 -ng2 true / false / sourcemaps ... export Titanium NG2 binaries. If 'sourcemaps' is
 given, sourcemaps will be generated for .ts files - useful for debugging.
 Default: true
 -ng1 ... export NG1 client resources; not exported by default.

EXIT codes: 0 - normal, 1 - export stopped by user, 2 - export failed, 3 - invalid arguments
Export DONE.

Exporting to ".servoy" or to mobile solution ".war" files

You can see a list of available command line arguments in a console window by executing {servoyInstall}/developer/exporter/export.bat -

 help and {servoyInstall}/developer/exporter/mobile_export.bat -help ;

4 of 9

Workspace exporter. Exports workspace solutions into .servoy files.
USAGE:

 -help or -? or /? or no arguments ... shows current help message.

 OR

 -s <solutions_separated_by_comma> -o <out_dir> -data <workspace_location> [optional_args]

 Optional arguments:

 -verbose ... prints more info to console
 -p <properties_file> ... path and name of properties file used to start exporter.
 Default: the 'servoy.properties' file from 'application_server' will be used.
 -as <app_server_dir> ... specifies where to find the 'application_server' directory.
 Default: '../../application_server'.
 -pl alternate project locations; solution, resources and other needed projects will
 be searched for in subfolders (deep) of the given 'workspace_location' as well.
 For example: if the
 workspace needs to contain projects from different git repositories, those can
 be checked out in '<workspace_loc>', '<workspace_loc>/a', '<workspace_loc>/b/c'
 and so on.
 -ie ignore build errors. CAUTION! the use of this flag is discouraged; it can cause
 invalid solutions to be exported.
 -sb skip build. No build markers will be generated. This can greatly decrease
 export time. CAUTION! the use of this flag is discouraged;
 it can cause invalid solutions to be exported (added in 2019.12).
 -dbi ... export based on dbi files (even if database servers are available)
 -md ws|db|none|both ... take table metadata from workspace / database / both+check.
 Usually you will want to use 'ws'.
 -sd ... exports sample data. IMPORTANT: all needed DB
 servers must already be started
 -sdcount <count> ... number of rows to export per table. Only makes sense when -sd
 is also present. Can be 'all' (without the '). Default: 10000
 -i18n ... exports i18n data
 -users ... exports users
 -tables ... export all table information about tables from referenced servers.
 IMPORTANT: all needed DB servers must already be started
 -pwd <protection_password> ... protect the exported solution with given password.
 -modules [<module1_name> <module2_name> ... <moduleN_name>]
 argument specified in command line. Includes all or part of referenced modules
 in export. If only '-modules' is used, it will export all referenced modules.
 If a list of modules is also included, it will export only modules from this
 list, provided they are referenced by exported solution.
 -isf <import_options_file> ... path to import options file. Default value is null.
 If present, will be added to export file as import_settings.json. This file
 should be taken from a developer export (import_settings.json inside .servoy
 file).

EXIT codes: 0 - normal, 1 - export stopped by user, 2 - export failed, 3 - invalid arguments
Export DONE.

Exported solution versions

Starting with the Servoy 2020.06 release, it is good practice to have versions for your solutions and modules.

Before exporting solutions as files, make sure you set the solution versions in the solution properties view in the developer.

This is used to avoid problems caused by incompatible solution/modules versions in the workspace where the solutions will be imported.

5 of 9

Workspace exporter for mobile solutions. Exports mobile workspace solutions in .war format.
USAGE:

 -help or -? or /? or no arguments ... shows current help message.

 OR

 -s <solutions_separated_by_comma> -o <out_dir> -data <workspace_location> [optional_args]

 Optional arguments:

 -verbose ... prints more info to console
 -p <properties_file> ... path and name of properties file used to start exporter.
 Default: the 'servoy.properties' file from 'application_server' will be used.
 -as <app_server_dir> ... specifies where to find the 'application_server' directory.
 Default: '../../application_server'.
 -pl alternate project locations; solution, resources and other needed projects will
 be searched for in subfolders (deep) of the given 'workspace_location' as well.
 For example: if the
 workspace needs to contain projects from different git repositories, those can
 be checked out in '<workspace_loc>', '<workspace_loc>/a', '<workspace_loc>/b/c'
 and so on.
 -ie ignore build errors. CAUTION! the use of this flag is discouraged; it can cause
 invalid solutions to be exported.
 -sb skip build. No build markers will be generated. This can greatly decrease
 export time. CAUTION! the use of this flag is discouraged;
 it can cause invalid solutions to be exported.
 -production ... export normal mobile client. Default: false (exports unit test war).
 -server_url <url> ... application server URL. Used to find mobile service solution.
 Default: http://localhost:[detectedInstallationPortNumber]
 -service_solution ... name of the service solution (default will be
 mySolutionName_service).
 -sync_timeout <seconds> ... client sync call timeout. Default: 30 sec.
 -long_test_names ... only if '-production' is not set; it will generate 'long' test
 method names that include solution and form/scope name; this can
 help with dumb junit tools that ignore junit test suite nesting
 when showing test results - thus loosing that information.
 (starting with 2020.09)

EXIT codes: 0 - normal, 1 - export stopped by user, 2 - export failed, 3 - invalid arguments
Export DONE.

(Import) Test suite runner

Arguments are shown below. This is a JUnit suite that actually will import a .servoy file and run the JSUnit tests on them. It's not an actual command line tool
but it can be used directly from command line, or from several build tools. See as an example.Servoy Software Factory Example using Jenkins

This is the smart import-test-client test-suite runner HELP message.

This suite is able to import one or more .servoy solutions and run jsunit tests on them. If you did
not expect to see this message but still got it, then something is probably misconfigured...

The working directory is assumed to be [path_to_your_servoy_install]/application_server. If this is
not the case please define system property 'servoy.application_server.dir'.

You can give parameters to this test suite using system properties. Configurable system properties:

 servoy.test.help
 Prints this help message to the console when the value is 'true'.

 servoy.test.property-file
 Key for the system property pointing to the servoy.properties file that should be used
 (either absolute or relative to the working dir). If not specified, the properties will be
 loaded from '<working dir>/<default properties file name obtained through usual means>'.

 servoy.test.target-exports
 Key for the system property that points to the solutions that should be tested. It must
 point to a folder containing exported solutions or to an exported solution file. The name of

https://wiki.servoy.com/pages/viewpage.action?pageId=1868621

6 of 9

 the export files must be the same as the solution it contains that must be tested. If this
 is not specified, the default value is '<working dir>/../../exportedSolutions/'.

 servoy.test.solution-load.timeout
 Key for the system property that specifies the maximum number of seconds in which a solution
 should load and be ready for testing. Solutions with long running onOpen handlers might want
 to set this. If a solution doesn't load in this time frame, the tests will fail. Default
 value: 300 sec. Minimum: 5 sec.

 servoy.test.import-config-file
 Key for the system property that points to the import configuration properties file. That is
 a standard .properties file from which import options will be read. If this is not specified
 then a set of default import options will be used - which will try to overwrite and import
 as much as possible. Put a 'key=value' pair on each line in the file; here is a list of
 properties that can be used in the file (defaults, marked with '*', are used for unspecified
 properties):

 overwriteStyles [*true/false] Overwrite repository styles with import version
 overwriteUserGroups [*true/false] Overwrite repository group security settings with
 import version
 cleanSolutionName [newName] A clean import will be performed using the new
 solution name. Only specify this if you want a clean
 import. Default: do not use clean import
 overrideSequenceTypes [*true/false] Override existing sequence type definitions (in
 repository) with the sequence types contained in the
 import file
 updateSequences [*true/false] Update sequences for all tables on all servers used
 by the imported solution and modules
 overrideDefaultValues [*true/false] Override existing default values (in repository)
 with the default values contained in the import file
 allowSQLKeywords [*true/false] Allow reserved SQL keywords as table or column names
 (will fail unless supported by the backend database)
 allowDataModelChanges [*true/false/serverNames] Allow data model (database) changes
 skipDatabaseViewsUpdate
 [true/*false] Skip database view create/update (table info will be
 imported)
 showDataModelChanges [*true/false] Display data model (database) changes
 importMetaData [*true/false] Import solution meta data
 importSampleData [*true/false] Import solution sample data
 importI18NKeys [*true/false] Import internationalization (i18n) data (inserts and
 updates)
 insertNewI18NKeysOnly [true/*false] Insert new internationalization (i18n) keys only
 (inserts only, no updates)
 importUserPolicy [skip/create_new_users_update_groups/*overwrite_all]
 Where:

 [skip] Do not import users contained in import
 [create_new_users_update_groups] Create non-existing
 users and add existing users to groups
 specified in import
 [overwrite_all] Overwrite existing users completely
 (USE WITH CARE)

 addUsersToAdminGroup [*true/false] Allow users to be added to the Administrators group.
 solutionPassword_name [password] Only use this if the export is password protected.
 'name' is the protected solution's name. One such
 property can be set for each protected solution
 importHookUserName [userName] Any import hooks will run using this user's
 credentials. Null by default.
 servoy.test.long-test-method-names
 Key for the boolean system property that, when 'true', will generate long test method names
 that contain solution name and form/scope names in them; this can help with dumb junit tools
 that ignore junit test suite nesting when showing test results - and loose that information.
 (starting with 2020.09)

Mobile test suite runner

Arguments are shown below. This is a JUnit suite that will run the JSUnit tests on an exported and deployed mobile solution (and it's mobile service solution
that is already running or can be imported from .servoy and made available). It's not an actual command line tool but it can be used directly from command
line, or from several build tools. See as an example.Servoy Software Factory Example using Jenkins

https://wiki.servoy.com/pages/viewpage.action?pageId=1868621

7 of 9

This is the mobile-test-client test-suite runner HELP message.

This suite is able to deploy one mobile test solution (in Servoy's embedded Tomcat) and run jsunit
tests on it. If you did not expect to see this message but still got it, then something is probably
misconfigured...

The test mobile client sync operation(s) can either be done against an already running service
solution or by specifying the 'servoy.test.targetServiceSolution' property (that will use a .servoy
export to start the service solution).

The working directory is assumed to be [path_to_your_servoy_install]/application_server. If this is
not the case please define system property 'servoy.application_server.dir' as well.

You can give parameters to this test suite using system properties. Configurable system properties:

 servoy.test.help
 Prints this help message to the console when the value is 'true'.

 servoy.test.target
 Key for the system property that points to the exported test .war file. Required.

 servoy.test.username
 Key for the system property that gives the auto-login username.

 servoy.test.password
 Key for the system property that gives the auto-login password.

 servoy.test.clientConnectTimeout
 Key for the system property that specifies the time to wait (seconds) for mobile test client
 to connect before failing the tests with timeout. Defaults to 30 seconds.

 servoy.test.mobileClientUrl
 Key for the system property that specifies the URL pointing to the deployed mobile test
 client. This is the absolute URL to the deployed war application - up to (excluding) the war
 file name (context). It is useful in case the browser/driver used by Selenium for testing
 is on a different PC/device. Example: http://localhost:8080. If this is not specified, the
 mobile client URL will be built as 'http://localhost:[detectedInstallationPortNumber]/'.

 servoy.test.seleniumDriver
 Key for the system property that specifies the selenium configuration that will be used to
 start the mobile test client. This decides which browser/driver on which device will be used
 for testing. When selenium is used, 'selenium-server-standalone-x.y.z.jar' needs to be part
 of the classpath (or ios-server-x.y.z.jar when using ios-driver). Can be one of (drop the
 quotation):

 - 'localhost_chrome' - run tests on localhost using self-started Chrome Driver server.
 The 'chromedriver' executable needs to be in system's PATH or referenced by system
 property 'webdriver.chrome.driver'. You can download the server (currently) from:
 http://code.google.com/p/chromedriver/downloads/list

 - 'remote [capPairsDelimiter=...]
 ipad/iphone/android/chrome/safari/internetExplorer/firefox/edge/opera
 URL
 [capability_pairs_in_format key=value]'

 runs tests on localhost or remote location using WebDriver's wire protocol. 'URL'
 specifies the already running remote WebDriver server's location (that supports the
 chosen capabilities).

 This can be used to run ipad/iphone/android/chrome/firefox/internetExplorer/opera/
 safari tests by connecting to an already started WebDriver server. Use this option
 with pre-started 'ios-driver', 'Chrome Driver', 'Internet Explorer Driver Server',
 'OperaDriver', 'Firefox Driver', ... driver servers.

 You can optionally specify a number of key=value pairs that will be set in the
 RemoteWebDriver's capabilities object. For example, if you use Sauce Labs service

 idle-timeout=500 deviceOrientation=portrait

 The value will be interpreted as a String. You can specify multiple capability

8 of 9

 pairs separated by spaces or by the chars specified via 'capPairsDelimiter=' above
 if set.

 Firefox Driver server can be used remotely as well by starting a firefox instance
 with the Firefox Driver xpi installed and correct system properties configured. For
 more info on how to start these remote WebDriver servers see (links at the time
 this doc was written):

 http://code.google.com/p/selenium/wiki/ChromeDriver
 http://ios-driver.github.io/ios-driver/safari.html
 http://code.google.com/p/selenium/wiki/FirefoxDriver
 http://code.google.com/p/selenium/wiki/OperaDriver
 http://code.google.com/p/selenium/wiki/InternetExplorerDriver
 http://code.google.com/p/selenium/w/list
 http://docs.seleniumhq.org/download/

 Example (using ios-driver): 'remote iphone http://mobiletesting_1:4444/wd/hub'

 - 'localhost_firefox' (DEFAULT) - run tests on localhost using self - started Firefox
 Driver server. The Firefox driver is available in selenium-server-stanalone.jar as
 an .xpi that gets added to then installed Firefox's profile when it is started.

 - 'full.path.to.java.class.that.starts.selenium' for (advanced) users with knowledge of
 Java and Selenium usage. This allows starting a custom selenium driver that will
 be used to start the mobile client. Classes specified here have to implement the
 com.servoy.automation.browser.ISeleniumStarter interface.

 - 'none' - it will not start any browser for testing. The mobile test client will have
 to be started by some other/external means.

 servoy.test.targetServiceSolution
 Key for the system property that points to the exported mobile service solution ('.servoy'
 file). Optional. If this is not specified, the service solution must already be available /
 running. If this is set, further import options / settings can be configured via properties:
 'servoy.test.import-config-file' and
 'servoy.test.property-file'.
 These two system properties above will only be used when a target service solution export is
 specified.

 servoy.test.property-file
 Key for the system property pointing to the servoy.properties file that should be used
 (either absolute or relative to the working dir). If not specified, the properties will be
 loaded from '<working dir>/<default properties file name obtained through usual means>'.

 servoy.test.import-config-file
 Key for the system property that points to the import configuration properties file. That is
 a standard .properties file from which import options will be read. If this is not specified
 then a set of default import options will be used - which will try to overwrite and import
 as much as possible. Put a 'key=value' pair on each line in the file; here is a list of
 properties that can be used in the file (defaults, marked with '*', are used for unspecified
 properties):

 overwriteStyles [*true/false] Overwrite repository styles with import version
 overwriteUserGroups [*true/false] Overwrite repository group security settings with
 import version
 cleanSolutionName [newName] A clean import will be performed using the new
 solution name. Only specify this if you want a clean
 import. Default: do not use clean import
 overrideSequenceTypes [*true/false] Override existing sequence type definitions (in
 repository) with the sequence types contained in the
 import file
 updateSequences [*true/false] Update sequences for all tables on all servers used
 by the imported solution and modules
 overrideDefaultValues [*true/false] Override existing default values (in repository)
 with the default values contained in the import file
 allowSQLKeywords [*true/false] Allow reserved SQL keywords as table or column names
 (will fail unless supported by the backend database)
 allowDataModelChanges [*true/false] Allow data model (database) changes
 skipDatabaseViewsUpdate
 [true/*false] Skip database view create/update (table info will be
 imported)
 showDataModelChanges [*true/false] Display data model (database) changes
 importMetaData [*true/false] Import solution meta data

9 of 9

 importSampleData [*true/false] Import solution sample data
 importI18NKeys [*true/false] Import internationalization (i18n) data (inserts and
 updates)
 insertNewI18NKeysOnly [true/*false] Insert new internationalization (i18n) keys only
 (inserts only, no updates)
 importUserPolicy [skip/create_new_users_update_groups/*overwrite_all]
 Where:

 [skip] Do not import users contained in import
 [create_new_users_update_groups] Create non-existing
 users and add existing users to groups
 specified in import
 [overwrite_all] Overwrite existing users completely
 (USE WITH CARE)

 addUsersToAdminGroup [*true/false] Allow users to be added to the Administrators group.
 solutionPassword_name [password] Only use this if the export is password protected.
 'name' is the protected solution's name. One such
 property can be set for each protected solution
 importHookUserName [userName] Any import hooks will run using this user's
 credentials. Null by default.
 servoy.test.log4jConfigFile
 Key for the system property that points to a log4j configuration properties file. Optional.
 This property will be overridden if an exported service solution is specified by the logging
 specified by the servoy.properties file.

	Command line utilities for Exporting of Solutions and Unit Testing

