
1 of 4

Styling Solutions
Servoy offers a layered mechanism of styling the UI of solutions, with the options slightly differing for Smart Clients and Web Clients.

Smart Client: Java Swing Look And Feel > Look And Feel Theme (optional, depending on the used Look And Feel) > Styling within the solution

Web Client: Default StyleSheet > Web Client Template modification > Styling within the solution

This chapter describes the various levels of Styling options for a solution in Servoy. First the Smart and Web Client specific Styling options are discussed,
after which Styling options that are applicable to both Clients within the solution are presented.

NG Client: see Styling in the NGClient

In This Chapter

Smart Client Specific Styling Options
About Java Swing Look and Feels

Themes
Adding Additional Look and Feels
Creating Custom Look and Feels
Specifying the Default Look and Feel for Smart Clients
Manually Changing the Look and Feel in a Smart Client

Web Client Specific Styling Options
Web Client Default StyleSheet
Pushing Servoy Element Class into DOM Element
Web Client Template Modification

Solution Styling Options
Designtime Styling Options

StyleSheets
Switching StyleSheets

Designtime Properties
Runtime Dynamic Styling Options

Updating UI Component Properties through Their Scripting API
Conditional Styling Using the onRender Event

Smart Client Specific Styling Options

Servoy Smart Clients are Java Swing applications and Java Swing has the concepts of Look And Feels (LAFs) that can be applied to all Swing components.

Servoy supports using Java Swing Look and Feels out of the box.

About Java Swing Look and Feels

Java Swing Look and Feels come in two variaties:

Cross platform Look And Feels
Platform specific Look And Feels

Cross platform Look And Feels aim to provide the exact same UI regardless the platform, for example Windows, OSX or Linux, on which the LAF is used.
Platform specific Look And Feels will only work on the platform they are designed for.

Java on each platform ships with at least a platform specific LAF, that is the default LAF used by the Servoy Smart Client. Java also ships 2 cross platform
LAFS, Metal and Nimbus, of which Nimbus is the more modern LAF.

Themes

Some LAFs support multiple themes.

Adding Additional Look and Feels

Besides the LAFs that are shipped with Java itself, additional third party LAFs can be added to Servoy, by placing the LAF library in the {servoyInstall}
 directory./application_server/lafs

 A word of caution on third party Look And Feels

There are many third party Look And Feels around for Java, both free/open source LAFs and commercial LAFs. The quality of these LAFs differs, so when
opting to use a third party LAF, make sure to properly test the LAF in combination with the developed solution in Servoy. A public listing of the majority of the
available third party LAFs can be found on http://www.javootoo.com/

Creating Custom Look and Feels

Creating custom Look and Feels requires detailed Java knowledge and is in general a lot of work.

https://wiki.servoy.com/display/DOCS/Styling+in+the+NGClient
http://www.javootoo.com/

2 of 4

Servoy partners with , a company that provides User Interface Design services and products, one of the products being a customizable Look and Centigrade
Feel that is fully compatible with Servoy. For more information, see the .Centigrade website

Specifying the Default Look and Feel for Smart Clients

The on the Servoy Application Server allow the configuration of the default LAF for all Smart Clients, through the Smart Client Settings selectedlnf
property. This property needs to be set to the className of the Look And Feel class. When the className is unknown, it can be retrieved by calling the
following function in a Smart Client, after manually selecting the LAF in the :Smart Client Preferences

var laf = Packages.javax.swing.UIManager.getLookAndFeel()
application.output(laf.getClass().getName())

Not every LAF is supported on every platform. Notoriously the OSX platform is limited in the supported LAFs. It is therefor possible to exclude the Smart
Clients started on OSX from getting the supplied LAF, using the setting.pushLnfToMac

If the LAF supports themes, the default theme to use can be specified through the setting.lnf.theme

Manually Changing the Look and Feel in a Smart Client

Through the panel in the Smart Client, users can select the Look and Feel of their liking. The panel is accessible through > Preferences Preference Edit Pre
 > .ferences Look and Feel

Access to the panel by the user can be removed using the , that allows to remove the menu item from the menu.Preference window plugin Preference Edit

Web Client Specific Styling Options

Web Client Default StyleSheet

The default styling of forms and element in the Web Client is determined by a default stylesheet that can be customized. See for Customizing the Web Client
more info.

Pushing Servoy Element Class into DOM Element

Servoy allows the style classes of the Servoy elements that have property to be pushed into the DOM elements.styleClass

For this, the webclient setting needs to be set to true. The set on the Servoy element will servoy.webclient.pushClassToHTMLElement styleClass
be pushed into the DOM hierarchy, on the first element of the hierarchy corresponding to the Servoy element.

Example This is an example of how the of a TEXT_FIELD is pushed into the DOM elementstyleClass

The property set on the field is: 'fieldStyleClass', and is defined in the StyleSheet like this:styleClass

field.fieldStyleClass {
 background-color: #F00;
}

The DOM element will be:

<div servoy:id="sv__82335AC7_C903_46F1_8F36_9B44AA4615E3_wrapper" id="
sv____82335AC7__C903__46F1__8F36__9B44AA4615E311_wrapper" class="fieldStyleClass" style="position:absolute;
height:16px;min-width:130px;width:130px;left:150px;top:130px;">
 <input servoy:id="sv__82335AC7_C903_46F1_8F36_9B44AA4615E3" name="10" class="field" type="text"
 value="3" id="sv____82335AC7__C903__46F1__8F36__9B44AA4615E311" autocomplete="off"
 onkeydown="onKeyDownConsumeEnter(event,
 '?x=u1ooTww5c8GP17GlZDvgUmxY17mD3BWf5ccGjoUMzTveUu0Mi2G1wRitV1MI28ok',
 'sv____82335AC7__C903__46F1__8F36__9B44AA4615E311')" onkeypress="return
 Servoy.Validation.numbersonly(event,false,'.',',','$','%',this,-1);" style="margin:0px;" tabindex="4"
 onblur="postEventCallback(this,'blur','?x=JZec7WTy2t8cdQ*ePrREbjfGUSFMI-
 ZQ8HNJMnJl7JuYaifcsWmWShVmxcd1w*8w',event,false)">
</div>

Web Client Template Modification

Each form created in Servoy Developer results in a customizable HTML and CSS template which are at runtime utilized to create the HTML markup of the
Web Client. See for more info on template customization.Customizing the Web Client

http://www.centigrade.de/en
http://www.centigrade.de/en
https://wiki.servoy.com/display/DOCS/Smart+Client+Settings
https://wiki.servoy.com/display/DOCS/window
https://wiki.servoy.com/display/DOCS/Customizing+the+Web+Client
https://wiki.servoy.com/display/DOCS/Web+Client+Settings
https://wiki.servoy.com/display/DOCS/Customizing+the+Web+Client

3 of 4

Solution Styling Options

Within a solution, regardless of whether the solution will run in a Smart or Web Client, Servoy provides 2 layers of designtime styling options and 2 layers of
runtime dynamic styling options

Designtime Styling Options

The two levels of designtime styling options are StyleSheets and designtime properties of all the UI components.

StyleSheets

Servoy provides the ability to separate the Styling from the solution's code through CSS StyleSheets. These StyleSheets can be created and managed
inside the Servoy Developer IDE (> >).Solution Explorer Resources Styles

A StyleSheet is linked to a form using the form's property. styleName

The StyleSheet can define default styling for each UI objects within Servoy (forms and elements) and provide any number of additional StyleClasses for
each UI object. These additional StyleClasses can be set on individual UI objects through their property.styleClass

In addition to providing styling for specific UI objects, the StyleSheet can also provide odd/even/selected for the rows in the grids of forms in TableView and
Portals.

When creating a new StyleSheet in Servoy Developer, the provides a option to insert a StyleSheet sample in the newly created New StyleSheet wizard
StyleSheet. This sample provides a good overview of the available options.

The CSS Editor in Servoy Developer provides full code completion for the supported CSS properties and their values.

For an overview of the supported CSS properties, see Supported CSS style properties

Switching StyleSheets

At designtime, forms can be designed to use a specific StyleSheet. In order to facilitate skinning the solution, for example for different customers, Servoy
provides the option to dynamically switch the StyleSheet use at runtime using the following code:

application.overrideStyle('baseStyle', 'customerXStyle');

When this code gets executed, any form that was designed to use the StyleSheet 'baseStyle' will instead start using the 'customerXStyle'. Note that this will
only take effect on forms that are loaded after performing the switch.

Designtime Properties

While the StyleSheet support provides generic styling options, with the option to differentiate on individual UI objects through additional StyleClasses, all the
UI objects also support several styling related properties, like , and for example.borderType background fontType

As long as these properties are set to default the styling of the element will be according to the applicable StyleSheet and StyleClasses. When specifying a a
custom value for the property, it overrides the Styling inherited through the StyleSheet.

Runtime Dynamic Styling Options

At runtime there are 2 levels of dynamically changing styling:

Updating UI component properties through their scripting API
Conditional styling using the onRender event

Updating UI Component Properties through Their Scripting API

Each UI component provides a scripting API and that API provides methods to alter the appearance of the UI component dynamically at runtime.

For a complete overview of the runtime API of all UI components see for form instances and the child nodes of for all the different RuntimeForm elements
element types.

Conditional Styling Using the onRender Event

The event on forms and elements provides a way to conditionally change the appearance of the UI component.onRender

The event is available on forms, portals and elements. This event allows changing display properties of supporting components just before they onRender
are shown or updated. As such it can be used for conditional formatting for example.

On forms and portals the event is fired not only for the form/portal itself, but also for all the standard Servoy elements on the form/portal, if the element does
not have its own event handler. The form/portal level event will not fire for beans.onRender onRender

The event handler is called with a parameter of type , that provides the following functions:onRender JSRenderEvent

getRecord(): the record of the rendered object
getRecordIndex(): the index of the rendered object

https://wiki.servoy.com/display/DOCS/Supported+CSS+style+properties
https://wiki.servoy.com/display/DOCS/RuntimeForm
https://wiki.servoy.com/display/DOCS/elements

4 of 4

getRenderable(): the rendered object
The returned object is of type . A object can be an instance of a , or any of the other Renderable Renderable RuntimeForm RuntimePortal Ru

 elements. ntimeXxxx
The class exposes all the properties that can be set in the event and also utility functions to get the rendering element Renderable onRender
type and its dataprovider.
The class is a generic class and some of the properties and methods are not applicable on the actual object being rendered. For Renderable
example, if the object being rendered is an instance of , the property or the method are RuntimeForm toolTipText getDataProviderID
irrelevant. When these are set/called anyway, they will fail silently .
hasFocus(): whether or not the rendered object has the focus
isRecordSelected(): whether or not the record of the rendering object is selected

Any updates made in the event to the rendering object are persistent within the client session until changed through the runtime API of the onRender
element or in a consecutive event. This means that in the logic, both states of a property need to be handled. This means that if the onRender onRender on

 is used to set the of a field depending if the dataprovider's value is negative or not, the needs to be explicitly set for both Render fgcolor fgcolor
negative and positive numbers. When the same foreground property is also set in scripting and should overrule the , the developer needs to take onRender
care of this inside the logic.onRender

Example Making negative values in a column red and zero values orange

/*
 * Called before the form component is rendered.
 *
 * @param {JSRenderEvent} event the render event
 */
function onRender(event) {
/** @type {JSRecord<db:/udm/orders>}*/
var rec = event.getRecord()
if (rec && rec.amt_tax == 0) {
 event.getRenderable().fgcolor = '#ff6600';
 } else if (rec && rec.amt_tax < 0) {
 event.getRenderable().fgcolor = '#ff0000';
 } else {
 event.getRenderable().fgcolor = '#000000';
 }
}

 About performance: The event will be fired often. It's therefor advised to keep the logic inside the event handler method as onRender onRender
optimized as possible, for quick execution. It's advised to refrain from calling any code outside the API of the or the class.JSRenderEvent Renderable

	Styling Solutions

