
Annotating JavaScript using JSDoc
The Script Editor in Servoy Developer offers full code completion (a.k.a. IntelliSense or autocomplete) and designtime code validation.

As JavaScript has no means to declare the type of a variable, the type of a function parameter or the return type of a function, it is not possible to get
100% correct results by just analyzing the JavaScript code itself.

In order to improve the quality of the code completion and code validation, functions and variables can be annotated with JSDoc to provide the missing
information.

Besides the benefits for code completion and validation, adding JSDoc to JavaScript code also improves the readability of the code for other developers,
as JSDoc allows for adding more info than just the typing info.

 Using the hosted on it is also possible to generate HTML documentation of the JavaScript code in a Solution, based on the JSDoc plugin ServoyForge
JSDOc supplied.

In This Chapter
What does JSDoc consist of?
Where does JSDoc come from and which syntax is supported
Working with JSDoc in the Script Editor
JSDoc Tags
Type Expressions
Type Casting

What does JSDoc consist of?

The JSDoc syntax consists of a set of JSDoc tags, contained in JSDoc comments.

JSDoc comments are like multi-line JavaScript comments, but the opening tag is '/* '' instead of just '/

Some of the JSDoc tags require a Type Expression as one of the parameters and most allow for an extra description behind the tag and it's parameters.

Example

/**
 * A simple demo function that outputs some text
 * @author Tom
 * @private
 *
 * @param {String} text The text that will be written to the output
 * @throws (String)
 * returns Boolean
 *
 * @example try {
 * saySomething('Hello world!');
 * } catch(e) {
 *
 * }
 *
 * @see application.output
 * @since 1.0
 * @version 1.0.1

 * - Added some more JSDoc tags for the demo
 */
function saySomething(text) {
 if (text == null || text.length == 0) {
 throw "Invalid input!"
 }
 application.output(text);
 return true;
}

Where does JSDoc come from and which syntax is supported

JSDoc is not a official standard, but the defacto standard is is defined by the project. The other major definer of JSDoc is JSDoc Toolkit Google Closure
. Compiler's support for JavaScript annotation

https://www.servoyforge.net/projects/jsdoc
https://www.servoyforge.net
http://code.google.com/p/jsdoc-toolkit/
http://code.google.com/closure/compiler/docs/js-for-compiler.html
http://code.google.com/closure/compiler/docs/js-for-compiler.html

The JSDoc syntax supported by the Servoy Developer IDE is derived from the and JSDoc Toolkit Google Closure Compiler's support for JavaScript
, plus some custom Servoy extensions.annotation

See and below for the supported tags and their syntax.JSDoc Tags Type Expressions

Working with JSDoc in the Script Editor

As mentioned in the intro, the Script Editor in Servoy Developer utilizes JSDoc to improve the quality of code completion and validation.

The Script Editor and Servoy Developer in general also facilitates the creation of JSDoc comments:

When creating functions and variables through the wizards in the Solution Explorer or the Properties pane linked to the Form Editor, Servoy will
automatically generate the variable or function with JSDoc comments.
When manually creating variables and functions inside the Script Editor, using code completion it is possible to select Script Templates for new
variables or functions that include the JSDoc comments
When working with existing variables and functions, the SCript Editor has a function to automatically generate the JSDoc comments for the
selected variable or function. This function can be accessed through:

Alt-Shift-J
Context Menu > Source > Generate Element Comments

Inside the JSDoc comment, the Script Editor offers code completion for the available JSDoc tags if the "@" sign is entered and then code
completion is requested (Control-Space)

When hovering over a reference to the variable of function somewhere in the Solution, the tooltip will show the JSDoc for the variable/function.

 Note that the Script Editor will always generate a JSDoc comment block with a @properties tag when saving the Script editor, if no JSDoc comments
have been defined. The @properties tag is a tag containing information for Servoy to provide proper linking and versioning.

JSDoc Tags

The following JSDoc tags are supported in the Script Editor. This means that the JSDoc tags will be rendered without the "@" sign when hovering over a
reference tot he function or variable.

The developer can add any custom tag to the JSDoc comment, but besides being shown in the tooltip when hovering over references it will not do
anything.

Tag Syntax & Examples Context Impact Description

@Allow
ToRunI
nFind

@AllowToRunInFind function Determines if the function will be executes in FindMode
when used as an event handler

Custom Servoy JSDoc tag to annotate a function that it can be run if
the Form on which the function is ran is in FindMode

@autho
r

@author userName function,
variable

none Indicates the author of the code

@constr
uctor

@constructor function This will show a different icon on the Script Outline view.
besides that no further impact

@depre
cated

@deprecated function,
variable

Accessing a deprecated variable or calling a deprecated
function will produce a builder marker in Servoy Developer

Indicates that the function or variable is obsolete or has been replaced
and should be used anymore.

@exam
ple

@example function,
variable

none Tag allowing to provide some sample code how to use the function or
variable. Multiline content is possible by including "
" as line-breaks behind each line of content.
To have more control over the formatting of the sample code, the
entire sample code can be wrapped in pre-tags:

samplecode

Multiple @example tags can be defined for each function or variable

@para
m

@param {Type} name
parameterDescription

function Builder markers will be generated in Servoy Developer if
the function is called with values for the parameters that do
no

Describe function parameters.
The tag can be followed by a between {} and must Type Expression
have a name.
The "name" must match the name of one of the parameters in the
function declaration.
When the parameter is an unknown Java object (so not a JavaScript
object) or there should be any type information assigned to the
parameter, the type expressing can be omitted.

@privat
e

@private function,
variable

Accessing a private variable/function from outside the
scope in which it is declared will generate a builder marker
in Servoy Developer

Annotates a variable or function as accessible only from within the file
in which it is declared

@prote
cted

@protected function,
variable

Accessing a protected variable/function from outside the
scope in which it is declared or a child scope will generate a
builder marker in Servoy Developer

Annotates a variable or function as accessible from within the same
file in which it is declared and all files that extend this file

@return @return {Type} function The specified type is used by the build process to
determine the correctness of the code that uses the
returned value

Annotates the type of the returned value.
If the function does not return any value, omit the @return tag.
The tag must be followed by a Type Expression

@return
s

@returns {Type} function see @return alias for @return

@see @see seeDescription function,
variable

none Tag to provide pointers to other parts of the code that are related

http://code.google.com/p/jsdoc-toolkit/
http://code.google.com/closure/compiler/docs/js-for-compiler.html
http://code.google.com/closure/compiler/docs/js-for-compiler.html

@since @since versionDescription function,
variable

none Tag to provide information about in which version of the code the
variable or function was introduced

@Suppr
essWar
nings

@SuppressWarnings
([deprecated], [hides],
[wrongparameters],
[undeclared])

function Stop the generation of builder markers in Servoy Developer
for the specified warnings

Custom Servoy JSDoc tag to suppress builder markers of a certain
type within a function.

@throw
s

@throws {Type} function none Tag to describe the type of Exceptions that can be raised when the
function is called.
Multiple @throws tags are allowed.
The tag must be followed by a Type Expression

@type @type {Type} variable,
inline
variable,
(function*)

The specified type is used by the build process to
determine the correctness of the code that uses the
variable

Tag to specify the type of the value that a variable can hold.
The tag must be followed by a Type Expression
On functions the @type tag is an alternative for @returns, but only one
of the two can be used

@versio
n

@version versionDescription function,
variable

none Tag to provide information about the version of the code

 A file can be either a Form JavaScript file or the globals JavaScript file. Only Form can be extended, thus the @protected tag is not relevant for
annotating variables and functions within the globals JavaScript file

Type Expressions

Type Expressions are used to describe the type and/or structure of data in the following cases:

Use case Tag Example

function
parameters

@param /**
 * @param {String} value Just some string
value
 */
function demo(value)
{...}

function return type @return
@return
s

/**
 * @param {String} value Just some string
value
 * @return { {x:Number, y:Number}}
 */
function demo(value) {
 ...
 return {x: 10, y: 20}
}

functions
exceptions

@throws /**
 * @throws {Number}
 */
function demo(value)
{
 ...
 throw -1;
}

variables @type /**
 * @type {XML}
 */
var html =

 Hello World!

A Type Expression is to always be surrounded by curly braces: {typeExpression}. Note that when using the Object Type expression variation that start and
stops with curly braces as well, this results in double opening and closing braces.

Expression
name

Syntax example Context Comments

Named type {String}
 {Boolean}
 {Number}

 {XML}
 {XMLList}

 {RuntimeForm}
 {RuntimeLabel}

 {JSButton}
{JSForm}

@param, @return,
@type, @throws

The complete list of available types can be seen by triggering Code
Completion inside the curly braces in the Script Editor

Any type {*}
Any type of value

@param, @return,
@type, @throws

OR type {String|Number}
Either a String or a Number

@param, @return,
@type, @throws

REST type {...String}
Indicates one or more String values

@param

Array type {String[]}
 {Array}

An array containing just string values

 {Array}
An array containing just bytes

@param, @return,
@type, @throws

Object type {Object}
An object where the value for each key is a String value

 {Object>}
An object where the value for each key contains arrays that
in turn contains only string values

 { {name:String, age:Number}}
An object with a "name" and "age" key, with resp. a string
and number value

@param, @return,
@type, @throws

Object type with
optional properties

 { {name:String, [age]:Number}}
 { {name:String, age:Number=}}

An object with a "name" and optional "age" key, with resp. a
string and number value

@param, @return,
@type, @throws

JSFoundset type {JSFoundset}1

A JSFoundSet from the contacts table of the udm database
server

 {JSFoundset<{col1:String, col2:Number}>}
A JSFoundSet with dataproviders "col1" and "col2" with
resp. string and number types

@param, @return,
@type

JSRecord type {JSRecord}1

A JSRecord from the contacts table of the udm database
server

 {JSRecord<{col1:String, col2:Number}>}
A JSFoundSet with dataproviders "col1" and "col2" with
resp. string and number types

@param, @return,
@type

JSDataSet type {JSDataSet<{name:String, age:Number}>}
An JSDataSet with a "name" and "age" column, with resp. a
string and number value

@param, @return,
@type

RuntimeForm type {RuntimeForm}
A RuntimeForm that extends superFormName

@param, @return,
@type

1 the value in between <..> is the datasource notation that is built up of the database server and tablename: db:/{serverName}/{tableName}

Type Casting

JSDoc can be used inside JavaScript code to specify the type of variables. This can be necessary if the correct type can't be automatically derived.

An example of such scenario is for example the databaseManager.getFoundSet() function. This function returns an object of the generic type JSFoundSet.
In most if not all scenario's however, it is known for which specific datasource the JSFoundSet was instantiated and the foundset object will be used as
such in code, accessing dataproviders on the foundset object that are specific to the datasource. This will result in builder markers, because those
dataproviders are not know on the generic JSFoundSet type. Through JSDoc casting however, it's possible to specify the type of the foundset object more
specifically

/**@type {JSFoundset<db:/udm/contacts>}*/
var fs = databaseManager.getFoundSet('db:/udm/contacts')

The difference between Code Completion with and without Type Casting can be seen in the two screenshots below. whent he Type casting is omitted, the
offered Code Completion related only to the generic JSFoundset type. With the Type Casting in place, all the dataproviders of the specific datasource are
also available in Code Completion:

With Type Casting:

Without Type Casting:

Another example is entries in Objects and/or Arrays: if every entry is of the same type, this can be specified on the Object/Array declaration using JSDoc,
for example:

/**@type {Array<String>}*/
var myStringArray = \[\]

If the Object/Array contains entries of different types, the type of the entries cannot be specified when declaring the Object/Array, or only a more generic
type can be specified.

An example of a generic type would be RuntimeComponent, which is the super type for RuntimeLabel, RuntimeField etc. RuntimeComponent defines all
the properties and methods that all the other RuntimeXxxx types have in common. When the need arises to call methods or set properties that are specific
to a specific RuntimeXxx type, the generic type can be casted:

if (elements\[1\] instanceof RuntimeLabel) {
 /**@type{RuntimeLabel}*/
 var myLabel = elements\[1\]
 var elementNames = myLabel.getLabelForElementName() //Calling method specific for labels
}

Type Casting can only be performed on variable declarations. It is not possible switch the type of an already declared variable later in code

	Annotating JavaScript using JSDoc

