
1.

Network related settings
The Servoy Application Server exposes several services to the network it is connected to. Among other they are the following Services:

Launch & run Smart Clients
Launch & run Web Clients
Host the Servoy Admin page
Expose services of plugins, like the PDF Forms and RESTful Web Services plugins

This chapter discusses the various configuration options in the area of network connectivity, including the ports over which the services are exposed and
enabling HTTPS & SSL. The network configuration options for Smart Client connectivity comprises the majority of this chapter, as it is the most extensive

In This Chapter
High level overview
Setting the HTTP port
Enabling HTTPS
Enforcing HTTPS
Smart Client specific configuration

Connection Modes
RMI port
RMI Server Hostname
RMI Connection Timeout
Ping delay
Profiles
SSL Encryption
Compression
Running Smart Clients behind a Proxy
Advanced HTTP Tunnel configuration
Kerebos support

High level overview

The Servoy Application Server exposes the majority of it's services over the so-called (default port 8080). Through this port the Servoy Admin HTTP Port
page, the Web Clients and plugin services are exposed to the outside world.

How Smart Clients communicate with the Servoy Application server depends largely on the chosen configuration. By default the communication goes
through the so-called (default port 1099), but the Servoy Application Server can be configured to tunnel all the communication over the HTTP RMI port
port as well, through the so-called .Tunnel

While Smart Clients communicate with the Application Server through the RMI port (or optionally the HTTP Tunnel) while it is running, the Smart Client is
launched over the HTTP port.

All network communication with the Servoy Application Server can be optionally secured, by enabling HTTPS for all traffic over the HTTPS port and by
enabled SSL encryption for the communication between the Smart Client and the Application Server.

Setting the HTTP port

The HTTP port, used to expose many of the services of the Servoy Application Server can be configured by editing the file located in server.xml ..
. This file contains the following entry by default:/application_server/server/conf

<Connector
 port="8080"
 protocol="HTTP/1.1"
 maxThreads="500"
 connectionTimeout="60000"
 redirectPort="8443"
 useBodyEncodingForURI="true"
/>

By altering the value of the "port" attribute, for example to 9090 or 80, the port on which the services of the Servoy Application Server are exposed can be
changed. In order for the changes to go into effect a restart of the Application Server is required.

 Note that on some operating systems, like Linux of FreeBSD, binding a process to a port number lower than 1024 (for example the default HTTP port
80) required the process to run as root or under administrator privileges.

Enabling HTTPS

The Tomcat server that underlies the Servoy Application Server can be configured to support HTTPS. The Tomcat server that comes bundled with Servoy
by default is not setup to support HTTPS, for two reasons:

1.

2.

Properly enabling HTTPS requires a keystore with signed SSL certificates that must be created externally from the installation process of the
Servoy Application Server
In many network scenario's the Servoy Application Server is running behind another Web server that takes care of the HTTPS support.

If direct HTPPS support on the Servoy Application Server is required, it can be enabled in Tomcat by adding an additional connector, configured for secure
access to the server.xml file located in .../application_server/server/conf

<Connector port="8443"
 maxThreads="500"
 connectionTimeout="60000"
 scheme="https"
 secure="true"
 SSLEnabled="true"
 keystoreFile="conf/keystore"
 keystorePass="changeit"
/>

In order to create a secure HTTPS connector a keystore with a signed SSL Certificate is required. The created keystore needs to be added to the Tomcat
server installation that is part of the Servoy Application Server, located in . It's a best practice to place the keystore in the ../application_server/server {servoy

/ directory. Note that the same keystore can be used to encrypt the traffic between Smart Clients and the Servoy Install}/application_server/server/conf
Application Server. See for more details.SSL Encryption

 For more information on how to create a keystore, see .Creating a keystore with a signed certificate

 While it's possible to enable SSL without a keystore, this is insecure and browsers will generate security warnings when accessing webpages through
HTTPS in such scenario.

In the definition of the connector above the value of the following attributes need to be adjusted to be correct for the supplied keystore:

keystoreFile: for example conf/mykeystore.ks
The value of this attribute needs to refer to the location and name of the keystore (either absolute or relative to the Tomcat server home directory
(../application_server/server))
keystorePass: for example mypassword
The passPhrase of the keystore. The passPhrase is specified when creating the keystore

Additionally, the value of the port attribute needs to be brought in sync with the value of the redirectPort attribute of the standard HTTP connector (or vise
versa), as the redirectPort attribute on the HTTP connector is used to redirect HTTP traffic to HTTPS when required, see . Enforcing HTTPS for all traffic
The value for the port can be any value. By default the redirectPort number on the HTTP Connector is set to 8443, but any value, including the default
HTTPS port 443 is possible.

Note that on some operating systems, like Linux of FreeBSD, binding a process to a port number lower than 1024 (for example the default HTTPS port
443) requires the process to run as root or under administrator privileges.

Enforcing HTTPS

If HTTPS is enabled, it's possible within the Tomcat server underlying the Servoy Application Server to redirect specific or all incoming HTTP traffic to
HTTPS by editing the file located in . web.xml ../application_server/server/webapps/ROOT/web_inf

Enforcing HTTPS for all traffic

To redirect all HTTP traffic to HTTP, add the following security-contraint at the the bottom of the file, just before '':

<security-constraint>
 <web-resource-collection>
 <web-resource-name>Automatic SLL Forwarding</web-resource-name>
 <url-pattern>/</url-pattern>
 </web-resource-collection>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>

When forcing all HTTP requests to HTTPS, the "servoy.jnlpCodebaseOverride" setting needs to be the HTTPS URL (including the HTTPS Connector port
number).

Enforcing HTTPS on selected traffic

Instead of redirecting all traffic to HTTPS it's also possible to redirect only specific traffic to HTTPS or exclude specific traffic. Which traffic is redirected or
not is controlled by the and/or nodes of the node of the security-constraint.

All url mappings used by Servoy can be found in the file located in web.xml ../application_server/server/webapps/ROOT/WEB-INF.

To force HTTPS only on the Servoy Admin page for example the following security-constraint ought to be used:

https://wiki.servoy.com/display/tutorials/Creating+a+keystore+with+a+signed+certificate

<security-constraint>
 <web-resource-collection>
 <web-resource-name>Automatic SLL Forwarding</web-resource-name>
 <url-pattern>/servoy-admin/*</url-pattern>
 </web-resource-collection>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>

To force HTTPS on all Web Client traffic and the Servoy Admin page, but excluding it for Template access, the following security-constraints are to be
used:

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Unsecure access</web-resource-name>
 <url-pattern>/servoy-webclient/templates/*</url-pattern>
 </web-resource-collection>
 <user-data-constraint>
 <transport-guarantee>NONE</transport-guarantee>
 </user-data-constraint>
 </security-constraint>

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Automatic SLL Forwarding</web-resource-name>
 <url-pattern>/servoy-admin/*</url-pattern>
 <url-pattern>/servoy-webclient/*</url-pattern>
 <url-pattern>/servoy-webclient</url-pattern>
 </web-resource-collection>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>

Smart Client specific configuration

The network configuration options for Smart Clients are quite extensive and which configuration to choose is largely dependent on the (different) network
setups between the Servoy Application Server and the machines on which Smart Clients are launched. Determining the most optimal network
configuration for Smart Client comes down to answering the following questions:

Can all client machines access the RMI port on the Servoy Application Server?
Can the Servoy Application Server directly access the client machines on any port?
Can all client machines access the Servoy Application Server on the same IP address?
Are some of the client machines configured to access webpages through a proxy?

The answers to these questions could eliminate one or more of the four possible Connection Modes, the the matrix below:

 Direct
Connection

Two-Way
Socket

HTTP
Tunnel

Socket
Tunnel

Client machines require direct access to the Application Server's HTTP
port

Client machines require direct access to the Application Server's RMI port

Application Server requires direct access to all ports on each client
machine

Supports client machines with Web Start proxy configuration 1

Supports multiple IP addresses for the Application Server

1 cannot initialize properly if Java WebStart on the Client machine is configured to use a Proxy. When it fails to initialize, the Smart Two-Way socket mode
Client will fall back to Direct Connection mode. See under below for more detailsTwo-Way socket mode Connection Modes

Connection Modes

The Servoy Application Server has several modes in which Smart Clients can communicate with the Application Server. Which mode is the best depends
on the network setup between the Servoy Application Server and the client machines on which the Smart Client will be launched. As the Servoy Smart
Client runs over both a LAN and WAN's, including over the internet, it can be that there are different network setups for different client machines.

Available Connection modes

Direct Connection

In Direct Connection mode Smart Clients connect to the Application Server over the configured RMI port to communicate with the
application Server. Vise versa, the Application Server also connects directly to the client machine on a random port to communicate
with the Smart Client.
While being the mode with the least overhead, this mode has only limited use cases. Using Direct Connection mode, all Smart
Clients should be able to access the Servoy Application Server under the same IP address and access to the RMI port of the server
should not be restricted. Equally important, the Servoy Application Server should also be able to connect without restrictions to any
port on any client machine that will run a Smart Client. This scenario is not very likely, due to firewalls, proxies and anti-virus
software.

Two-Way socket

Two-Way socket mode provides a more robust communication mechanism between Smart Clients and the Servoy Application
Server, where only the Smart Client initiates connections to the Application Server over the RMI port. This means that only the
Smart Clients need to be able to access the Application Server and that the Application Server does not need to be able to connect
to the client machine, like is required when using Direct Connection mode.
However, in case Java WebStart on the client machine is configured to connect through a proxy, Servoy will not be able to
instantiate Two-Way socket and thus falls back to the Direct Connection mode, with the restrictions that come with Direct
Connection mode. It is possible to configure Java WebStart on each client machine to not use a proxy, but this needs to be done on
each individual machine and might conflict with other Java WebStart applications that do require the proxy settings. See Java

 for more info.WebStart Proxy configuration

Within individual Smart Clients it's possible to turn off Two-Way socket through Preferences. When the user does so, the Smart
Client will start to use Direct Connection. The Smart Client will error if the network criteria for Direct Connection mode to work are
not met.

Note that disabling Two-way socket mode on the Application Server is pushed to all Smart Client, but when re-enabling Two-way
socket on the Application server, this setting is NOT pushed to the Smart Clients. The user needs to manually enable TwoWay
socket under Preferences in the Smart Client again.

Tunnel

Servoy comes with a so-called tunnel that Smart Clients can use to connect to Application Server. The tunnel is the most robust
communication mode available, at the cost of utilization of more server-side resources. For each Smart Client more memory,
threads and sockets (connections) are used on the Application Server. The tunnel supports two modes, namely HTTP and Socket
which can be used exclusively or mixed through the use of Profiles. Of the two tunnel modes, the HTTP mode consumes most
serverside resources.

HTTP Tunnel
When using the tunnel in HTTP mode, all communication between the Smart Client and the Application Server is done using the
HTTP Protocol, over the HTTP port on which the Application Server runs. The benefit of this mode is that it doesn't require that the
client machines can access the Application Server on the RMI port. This can be a huge benefit in cases where it's not possible to
open up access to the RMI port. When Smart Clients connect to the Application Server using the HTTP Tunnel, they will utilize
threads and connections from the Tomcat application server that underlies the Servoy Application Server.

Socket Tunnel
The tunnel in Socket mode is similar to the tunnel in HTTP mode, except that the communication with the Application Server goes
over the RMI port of the Application Server. This means that the RMI port of the Application Server should be accessible from all
client machines that will run Smart Clients. Unlike the tunnel in HTTP mode, the tunnel in Socket mode uses server-side resources
(threads & sockets (connections)) directly in Servoy, not through Tomcat.

Resource usage per Connection mode

The overview below indicated the difference in used resources per Connection mode. This information is provided in case tuning is required for large scale
deployments. For example, by default the Tomcat HTTP/HTTPS connectors are configured to allow a maximum of 500 concurrent threads. When
deploying large numbers of Smart Clients over the HTTP tunnel (possible in combination with a large number of Web Clients), it might be required to
change the maximum allowed threads in the Tomcat connectors.

Connection
Mode

Used Threads Used sockets

Direct Connection 1 thread per concurrent request 1 per request + 2 per
client

Two-Way socket 1 thread per concurrent request 1 per request + 2 per
client

HTTP Tunnel 2 Tomcat and 2 non-tomcat threads per
client

2 per client

Socket Tunnel 2 threads per client 1 per client

Setting the Connection mode
All connection modes can be configured through the Servoy Admin page, under Network Settings.

Direct Connection

SocketFactory.useTwoWaySocket: set to false
SocketFactory.rmiServerFactory: clear the field
SocketFactory.useSSL: set to true 1

SocketFactory.compress: set to false

In case the hostname of the server on which the Servoy Application Server runs does not resolve to an IP address that
is accessible to the client machines (common on Linux systems where the hostname resolves to 127.0.0.1):
java.rmi.server.hostname: set a valid IP address of the server that the client machines can access

Two-Way socket

SocketFactory.useTwoWaySocket: set to true
SocketFactory.rmiServerFactory: clear the field
SocketFactory.useSSL: set to true 1

SocketFactory.compress: set to true

If the server on which the Servoy Application Server runs has multiple network interfaces through which Smart Clients ought to
connect:
java.rmi.server.hostname: set to the IP address of the server's loopback interface, usually 127.0.0.1

Tunnel

SocketFactory.useTwoWaySocket: set to false
SocketFactory.rmiServerFactory: set to com.servoy.j2db.server.rmi.tunnel.ServerTunnelRMISocketFactoryFactory
SocketFactory.useSSL: set to true 1

SocketFactory.compress: set to true
SocketFactory.tunnelConnectionMode: choose one of the three options 2

1: SSL can also be turned off, but for security reasons it is advised to have SSL Encryption turned on when possible.See for additional settiSSL Encryption
ngs.

2: The Tunnel supports 2 modes, and . These modes can either be used exclusively, by selecting either or or the tunnel can be http socket http socket
configured to allow both modes simultaneously, by selecting . When the latter is selected, can be used to provide a way to Smart http&socket Profiles
Clients to connect using either of the two modes.

RMI port

With all connection modes, except the HTTP Tunnel, the Smart Clients communicate with the Servoy Application Server over the so-called RMI port. This
port needs to be accessible from all the client machines at all times, thus cannot be blocked by firewalls.

Through configuration the RMI Start Port value can be set. When the Servoy Application Server is launched it tries to bind to the specified RMI Start port. If
it fails to bind to this port, it will automatically try to bind to the next port. This process will continue until the binding succeeds. The actually used RMI port
should never be blocked by any firewall in between the Servoy Application Server and the client machines.

The RMI port number that is actually used is shown under in the on the Servoy Admin page under Server Information Servoy Server Status Servoy Server
Home

Setting the RMI port

The RMI Start port can be set through the Servoy Admin page under . Default value is 1099 Network Settings > servoy.rmiStartPort

RMI Server Hostname

The meaning of the RMI Server Hostname setting (java.rmi.server.hostname) depends on the Connection Mode used:

Connection
Mode

Relevance

Direct
Connection

Needs to be set to the IP address on which the all clients can reach the Servoy Application Server if the server's hostname does not resolve to an IP
address that the clients can reach

Two-Way
Socket

When the machine of which the Servoy Application Server runs has multiple network interfaces on which the Smart Clients could connect, this setting
needs to be set to the IP address of the server's loopback interface (usually 127.0.0.1)

HTTP/Socket
Tunnel

no relevance

 If a hostname is specified, note that the hostname is resolved to an IP address on the server!

RMI Connection Timeout

The RMI Connection timeout setting (rmi.connection.timeout) controls how long a the RMI layer will hang on to open sockets for reuse. A high value can
lead to many open sockets.

If there are a high number of open sockets, it can happen that a network component like a Firewall or NAT Router automatically starts closing them. When
this happens, when Servoy tries to use the socket connection, it will error. Servoy will automatically remove the erroneous socket and try the next one.
This will cause a slight performance decrease.

By lowering the RMI Connection timeout value, the total number of open sockets will be reduced, preventing the network component from closing them
automatically.

Value Comment

120 Default value

10 ~ 15 Alternative value to bring down the number of open sockets, to prevent the network component form automatically closing
them

0 When set to 0, the system default will be used

Ping delay

The Ping Delay setting (ApplicationServer.pingDelay) provides a mechanism to prevent network components from closing open connections that are
inactive for a while.

When set too high, and a network component between the Application Server and the Smart Client closes the connection, the User will be presented with
a Connection Lost dialog, from which the user can choose to reconnect or close the Smart Client.

When experiencing intermittent Connection Lost dialogs in the Smart Client, lower the ping delay.

When using the HTTP Tunnel exclusively for connecting Smart Clients, the alternative HTTP tunnel KEEP_ALIVE_INTERVAL can be used instead, as this
option has a lower overhead than the "ApplicationServer.pingDelay" setting. The "ApplicationServer.pingDelay" can be set to a very high number in this
case.

Profiles

A Profile is a named set of settings that can be used by a Smart Client.

Profiles are a way to allow the definition of multiple sets of configurations that are used by groups of Smart Clients. For more information on Profiles, see Pr
.ofiles

SSL Encryption

All the communication between the Servoy Application Server and the Smart Clients can be encrypted using SSL Keys and certificates. Servoy Smart
Clients can only work with either a 3rd party signed certificates or without a certificate. Self signed certificates are not supported by default, but can be
made to work by adding the setting "SocketFactory.useTestSSL" to either a Profile that is used or to the system.properties (Admin page > Admin settings >
system.properties)

When SSL is enabled it will also encrypt all properties in the file that have a property key that contains the text . For the servoy.properties "password"
encryption the specified SSL certificate will be used (or a default certificate if no keystore with certificates is specified). This means that if the certificate
/keystore is changed or SSL is disabled, the passwords cannot be decrypted anymore and have to be manually set again in plain text in the servoy.
properties file. If the encrypted properties are not reset manually, the Servoy Application Server will fail to launch.

Setting up SSL Encryption

Enabling SSL Encryption for communication between Smart Clients and the Servoy Application Server requires a keystore with a signed SSL certificate
and the adjustment of a three settings on the Servoy Admin page. For more information on how to create a keystore, see Creating a keystore with a signed

 .certificate

The created keystore needs to be added to the Servoy Application Server installation. Best practice is to place the keystore in the ../application_server
 directory. In this location the keystore is then also available to the Tomcat server underlying the Servoy Application Server and thus the same /server/conf

certificate can also be used for serving HTTPS content (see).Enabling HTTPS

After making the keystore available to the Servoy Application Server, the Servoy Application Server needs to be told where the keystore can be found and
configured to use it. The relevant settings are exposed under the Network Settings on the Servoy Admin page:

SocketFactory.useSSL: set to true
SocketFactory.SSLKeystorePath: set to the location and name of the keystore. The path must be relative to the Servoy Application Server
installation directory (../application_server/), for example server/conf/mykeystore.ks
SocketFactory.SSLKeystorePassphrase: Set to the passPhrase used when creating the keystore

Note that SSL can also be enabled without specifying the keystore, by just setting to . This is considered insecure and should SocketFactory.useSSL true
only be used for testing/demo purposes.

https://wiki.servoy.com/display/Serv52/Profiles
https://wiki.servoy.com/display/Serv52/Profiles
https://wiki.servoy.com/display/tutorials/Creating+a+keystore+with+a+signed+certificate
https://wiki.servoy.com/display/tutorials/Creating+a+keystore+with+a+signed+certificate

Compression

Compression reduces the amount of data send back and forth between the Servoy Application Server and the Smart Clients, thus improving performance.

Enabling/disabling compression

The Compression setting can be administered through the Servoy Admin page, under . Compression is turned Network Settings > SocketFactory.compress
on by default and should always be on. It should only be disabled when experiencing connection issues due to compression.

Running Smart Clients behind a Proxy

In many scenario's there will be proxies in between the Smart Client and the Application Server. Depending on the connection mode through which the
Smart Client connects and the configuration of Java WebStart on the client machine, this will either not be an issue at all, or require some configuration or
will not work.

Proxy configuration can be done in Java WebStart on the client machine.

Connection
mode

Proxy
Supported?

Config Comments

Direct
Connection

Yes No configuration
required

Two-Way Socket No N/A Two-way socket communication cannot be instantiated by the Smart Client inside Java WebStart if Java WebStart is configured to run through a
proxy.
The Smart Client will fall back to Direct Connection mode, which might work, as it requires the Servoy Application Server to be able to reach each
individual client machine an any random port

HTTP Tunnel Yes Not required by
default

It's possible to explicitly specify the proxy url, username and password, through Advanced HTTP Tunnel configuration

Socket Tunnel Yes No configuration required

 Note: up to and including Servoy 5.2.8 it is required to manually set the following system property on the Application Server to get the best possible:
SocketFactory.useProxySelector=true. As of Servoy 5.2.9 and Servoy 6.0 this setting with be done by default

Advanced HTTP Tunnel configuration

In the HTTP Tunnel connection mode, all communication between the Smart Client and the Servoy Application Server is done through the HTTP protocol
and as such is susceptible to the influences of network components and/or processes that handle the HTTP traffic. Such influences can be anti-virus
software, firewalls, proxies, NAT routers etc. While all these influences in general serve a goal, they can pose a challenge when trying to establish a
reliable connection between the Smart Client and the Application Server.

The negative influences that these network components and/or processes can cause are, at a high level, summarized below.

HTTP Chunked mode & Buffering

The HTTP protocol allows for the sending of HTTP requests in small chunks, instead of the entire request at once. As there is
significant overhead on the instantiation of HTTP requests, utilizing the chunked modus to send a package of data as a chunk of a
larger HTTP request instead of instantiating an HTTP request for each package of data provides a way to limit the overhead of
HTTP request instantiation.

However, some components in a network connection that deal with HTTP traffic perform buffering. This is the the process of holding
onto individual chunks of the HTTP requests until the entire request is received, before sending the full request to the next
component in the network connection. This means that the individual chunks only reach their destination when all the chunks that
belong to an individual HTTP request are received.

Connection timeouts

Components in the network connection over which an HTTP request is executed might inflict a limit on how long the connection may
be open, before it is automatically closed.

Content-Length enforcement

The HTTP protocol contains a mechanism to indicate the length of an HTTP request. While is not common practice to check the
supplied length with the actual length and reject the request if those do not match, it can be that there are components in the
network connection between the Smart Client and Application Server that do perform such a check and reject the HTTP requests if
the numbers do not match.

Additionally some components in the network might have a maximum content length that they enforce.

Default HTTP Tunnel configuration

In everyday life, buffering is the most likely candidate to cause issues, thus by default the HTTP tunnel is configured to NOT use Chunked mode, at the
cost of performance. The HTTP Tunnel is also configured by default with values for the relevant settings to prevent Connection timeout issues in most
scenario's. In the area of content length enforcement, the maximum length for HTTP requests is set to a proper value. The enforcing of the actual content
length being the same as the specified content length is NOT done, as the likelihood of network connections enforcing this not that great, while enabling
this would result in significant performance degradation.

Custom HTTP Tunnel configuration

The configuration of the HTTP tunnel can be altered by adding the relevant settings as system properties through the Servoy Admin page, under Servoy
. It's also possible to expose different configurations through .Server Home > Admin settings > system.properties Profiles

The following settings are available:

Property Default
Value

Description

com.sebster.tunnel.http.client.
SystemPropertiesHttpTunnelClientParams.
CLOSE_REQUEST_ON_FLUSH

true Whether or not to close the HTTP Request after each package of data. Default is true. While this incurs a
significant overhead due to having to instantiate an HTTP request for each package of data, this does
prevent buffering issues.
Besides incurring significant overhead, it also results in a large number of HTTP Requests to the
Application Server, which at some point might start blocking the requests.

com.sebster.tunnel.http.client.
SystemPropertiesHttpTunnelClientParams.
CHUNKED

true Whether or not to send data packages as chunks of a larger HTTP Request. This setting has no effect
if CLOSE_REQUEST_ON_FLUSH is set to true. Chunked mode is the preferred mode of operation, but
susceptible to buffering issues.

com.sebster.tunnel.http.client.
SystemPropertiesHttpTunnelClientParams.
KEEP_ALIVE_INTERVAL

15 The interval (in seconds) with which a little data is send into the HTTP request to prevent it from being
terminated by the network due to inactivity. Lower when experiencing connection timeout issues.

com.sebster.tunnel.http.client.
SystemPropertiesHttpTunnelClientParams.
MAX_REQUEST_AGE

300 The maximum time (in seconds) that a HTTP request is kept alive. Lower when experiencing timeout
issues.

com.sebster.tunnel.http.client.
SystemPropertiesHttpTunnelClientParams.
CONTENT_LENGTH

2097152
b

The maximum length of a single HTTP Request. Lower only when the network enforces a lower limit

com.sebster.tunnel.http.client.
SystemPropertiesHttpTunnelClientParams.
STRICT_CONTENT_LENGTH

false If set to true, the actual length of each HTTP request will be made to match the CONTENT_LENGTH
setting, by appending dummy data. Only set to true if the Content-Length is enforced by the network, as it
incurs a significant performance penalty

com.sebster.tunnel.http.client.
SystemPropertiesHttpTunnelClientParams.
PROXY_URI

 In case the Smart Client needs to communicate through a specific proxy and the proxy configuration
cannot be done in Java WebStart, the proxy url can be set directly on the HTTP Tunnel.

com.sebster.tunnel.http.client.
SystemPropertiesHttpTunnelClientParams.
PROXY_USERNAME,
com.sebster.tunnel.http.client.
SystemPropertiesHttpTunnelClientParams.
PROXY_PASSWORD

 Proxy credentials. If required by the proxy and not set here, the Smart Client will provide the user with a
dialog to enter the credentials

com.sebster.tunnel.http.client.
SystemPropertiesHttpTunnelClientParams.
USER_AGENT

 Empty by default. Can be set to any value if it is required to send a specific user-agent string with each
HTTP request

Suggested Profiles

The HTTP tunnel is already configured for most reliable connectivity, so this does not require a Profile. A relevant Profile would be the performance Profile,
which basically means enabling Chunked mode, by disabling "CLOSE_REQUEST_ON_FLUSH"

Best performance Profile

system.property.com.sebster.tunnel.http.client.SystemPropertiesHttpTunnelClientParams.
CLOSE_REQUEST_ON_FLUSH=false

 Note that the example above assume that the HTTP tunnel is already enabled. See for more info.Profiles

Kerebos support

Servoy supports Kerebos authentication for Smart Clients, as Java WebStart supports Kerebos authentication. Setting up Kerebos authentication within
Java WebStart on the client machine will not be described in the Servoy documentation, as it's highly specific and requires detailed knowledge of Kerebos
configuration.

If Kerebos authentication support is required, the following setting sets up required authentication context within Servoy: system.property.servoy.
usejaas=true. This setting can be applied through the Servoy Admin page, under or can be Servoy Server Home > Admin settings > system.properties
applied through a specific Profile.

For the configuration of Java WebStart on the client machines, please contact a Kerebos specialist.

 Kerebos authentication is currently not supported in combination with the HTTP and Socket Tunnel

https://wiki.servoy.com/display/Serv52/Profiles
https://wiki.servoy.com/display/Serv52/Profiles

	Network related settings

