Code Writing Features

This section describes useful code writing features in Servoy Script Editor.

Code Completion

Servoy supports code completion. As users type into the Script Editor, all known, non-private functions are displayed in a drop-down select box that
becomes filtered as more characters are typed. A description box also shows when an item is selected (see below).

forms,,
alignment: Form=alignment > Form based on datasource:
ﬂ allnames: Array<String= db:jexample_data/customers
core_dlg_generic: Form=core_dlg_generic>
customers: Form-=customers:
customers_new3: Form<customers_new3 =
customers_newd: Form<customers_newd =
customers_new: Form<customers_new:s>
dialog: Form=dialog=>
distribute: Form<distribute>
Mhistribution: Eorms Distribotioeg =

o e B Ll ¢

Press 'Tab' from proposal table or click for focus

® Toinsert a selected item into the code, hit Enter.
® |f a code containing variables is selected, hit the tab key to enter the items in sequence.
| forms.customers.controller. print(l[nrintCurrentRecordﬂnlvj, [showPrinterSelectDialog], [printerJob])| |

Code Hints

To see information relevant to a particular code item, users can hover over the relevant parts of the code. This is true for both the code list shown in the
Solution Explorer, as well as code in the Script Editor view. Servoy will provide an item description if it exists, for both out-of-the box functions as well as
functions defined by the user via JSDoc (see Support for JSDoc_ _section below).

Dynamic Code Validation

Code is dynamically validated at design-time. The success of the validation process is partially dependent on comprehensive JSDoc commenting, which
enables Servoy to provide more information regarding code errors and other warnings. Warnings are flagged in the vertical ruler and outline bar, and
details are provided in the Problems view at the bottom of the Servoy Workbench (see image below).

K customers_newl.js (Q globals.js &3 i@ iServoy WED Compare globals.js C 1”1 = EP
£i T globols.record_status += " - SEAHLH IEKM: " 4 globals.nav_search + "7
Z7E globals.nav_search = "'

279 1

ZEd

ZB1 globals. record_status 4= "</ html="

28E

283 if(cr == 1) Sfcurrent record 1 - so hide the "previous" button
284 {

2R forms[frm].element=, btn_prev.visible = false
286 1
2B7 else
288 {

@ Z2EG forms[frm].elements, btn_prev.visible = true
290 1
291
292 if{cr == fs || cr == tc) /fcurrent 1s last one - so hide the "next" button
293 {

@294 forms[frm].elements, btn_next.visible = false
205 1
296 else
207 I

7298 forms[frm].elements, btn_next.visible = true
209 1
300 } m
E15)0 else
302 {
a3 globals. record_status = '<htmlz<b=No Records</b="

304 forms[frm].elements.btn_next.visible = faolse

385 forms[frm].elements.btn_prev.visible = false
306 }

07 '}
D8 .
IQGE S ** -
316 * @properties={typeid:24,uuid:"4728bb29-9b80-4695-8a71-434b8dd97 208"} YH
| — R RN
@Taskq Eﬂ] Buﬂkmarks} Qn Searc[ﬂ ¥ =0

0 errors, 60 warnings, 0 others

' IRes.uun:e Path Location Ty
¥ & Warnings (60 items)

& Elerment “tabless_140" in form "frm_nav_main® frm_nav_main.frm /servoy_sample_pdf_form: servoy_sample_Fc
& Element in form "customers_new3” is outside customers_new3.frm /servoy_sample_pdf_form: servoy_sample_ Fe *

. o . v
(% Flement in form "rustomers new3” is outside customers new3 frm (servov samnle ndf form: servov samnle Fr
R R

As previously mentioned, the type of warnings/annotations that Servoy shows can be customized using the Preferences menu (found in the Script Editor
context menu).

Script Templates

Servoy allows users to create templates for frequently-used scripts and JSDoc comments. These scripts are then enabled by Servoy for use in code
completion.

Templates can be created by accessing Preferences from the contextual menu in Script Editor (users may have to unfold the menu tree on the left of the
Preferences window to see the Templates option, see below).

(NN &) Preferences (Filtered)

type filter text Templates P w
FGeneral
¥ JavaScript Create, edit or remove templates:
VEditor ' Marme Context Description Auto Ins/ [New...)
Folding M @author JsDoc author name on
Howvers M @param JsDoc parameter declaration on -
Mark Occurrences ™ @return JsDoc function return type dec on Edit..
Syntax Coloring M @throws JSDoc thrown exception declar on
@ Erype J5Doc variable type declaration on Remove
Typing M do JavaScript do-while on
E for JavaScript Simple loop on
 function JavaScript method definition on Restore Removed
E function JavaScript simple function with con on
M ifelse JavaScript if - else on Revert to Default
E switch JavaScript switch on
E try JavaScript try catch on
™ while JavaScript while loop on [Import...)
Export...
[D l»
Preview:

[: Restore Defaults j [: Apply j

® Ii Cancel j E‘ oK -}

Support for JSDoc

Servoy features support for regular comments and JSDoc comments. Importantly, disciplined use of JSDoc comments when creating functions and
variables ensures more complete information for Servoy in refactoring and code completion.

JSDoc tags can be created for an existing function by accessing the context menu Script Editor > Source > Generate Element Comment) or using the
keyboard shortcut ALT+SHIFT+J (alt+cmd+J).

{D Note

If business logic is added from Form Editor, JSDoc comment templates are automatically generated based on the context. Users can complete
the comment information as needed in Script Editor.

When creating JSDoc comments, code completion is also available for the following supported tags (type '@’ first, then Control-Space):

@\ | owToRunl nFi nd
@ut hor {user Nane}
@onstructor

@lepr ecat ed
@xanpl e

@ar am { Type} nane
@rivate

@eturn {Type}
@ee

@i nce

@hrows {Type}
@ype {Type}
@ersion

A complete list of other supported tags in JSDoc is provided in the Programming Guide.

Spellchecker for Comments

Servoy features SpellChecker support for comments in the Script Editor. This feature works with singleline, multiline and JSDoc comments.

	Code Writing Features

