lof 7

Client side logic (.js file)

This is the client-side .js file for the component. (running in browser)
It is the file declared in the .spec file under "definition".

The javascript file of the bean component is heavily linked to the specification and template of that component. Every web component is an angular module
of its own, with at least 1 directive that describes the component itself and it's behavior. The module and the one directive should be named

like the bean (camel case notation so a servoydefault-name will result in servoydefaultName). The web component's module should also have a
dependency to the 'servoy' module so that the web component can use the various servoy provided directives (starting with svy) and utilities.

Here is an example of such a .js file:

https://wiki.servoy.com/pages/viewpage.action?pageId=1869552
https://wiki.servoy.com/pages/viewpage.action?pageId=1869552
https://wiki.servoy.com/pages/viewpage.action?pageId=8061129

20f7

angul ar . modul e(' servoydefaul t Textfield' ,['servoy']).directive('servoydefaultTextfield , function() {
return {
restrict: 'E,
transcl ude: true,

scope: {

nodel : "=svyModel ",

api: "=svyApi ",

handl ers: "=svyHandl ers",

svyServoyapi: "=" // only needed if you really need access to this servoy provided APl for nore control
b
control l er: function($scope, $elenment, $attrs) {

/1 fill in the api defined in the spec file

$scope. api . onDat aChangeCal | back = function(event, returnval) {
if(!returnval) {
$el ement [0] . focus();
}
IE
/**
* Set the focus on the textfield.
=
$scope. api . request Focus = function() {
$el ement [0] . f ocus()

},

/**
* CGet the selected text.
* @eturn {string} the text selected in the field.
*
/
$scope. api . get Sel ect edText = function() {
var elem = $el ement[0];
return el emval ue. substr (el em sel ectionStart, elem selectionEnd - el emsel ectionStart);

/**
* Set the selected text.
* @aram {int} start the start index in the text
* @aram{int} end the end index in the text
*/
$scope. api . set Sel ection = function(start, end) {
var el em = $el ement[0] ;
if (el emcreateText Range) {
var sel Range = el em creat eText Range();
sel Range. col | apse(true);
sel Range. noveStart (' character', start);
sel Range. noveEnd(' character', end);
sel Range. sel ect () ;
el em focus();
} else if (elem setSel ecti onRange) {
el em focus();
el em set Sel ecti onRange(start, end);
} else if (typeof elemselectionStart != "undefined) {
el em sel ectionStart = start;
el em sel ecti onEnd = end;
el em focus();

}

$scope. ond i ck = function(event){
if ($scope. nodel . editable == fal se & $scope. handl ers. onActi onMet hod) {
$scope. handl ers. onAct i onMet hod(event) ;
}
}
H

tenmplateUrl: 'servoydefault/datatextfield/datatextfield. htm",
repl ace: true

b
})

30f7

It is a good practice to document your components, please note the jsdoc tags in the code above. Servoy developer will use that JSDoc information
from either the component client-side scripting file or from the component server-side scripting file to show tooltips in Solution Explorer, code editor and so
on - for the API functions declared in it's .spec file. Some useful tags that can be inserted in jsdoc: @example (used when moving sample code from
solution explorer), @deprecated. For information about documenting model properties and handlers please have a look at Documenting what properties do
/ Documenting handlers and handler templates.

First you can see the directive declaring that it uses a few things Servoy provides:

® svyModel: this is the object that contains all properties that the .spec file declares in it's "model" section.

® svyApi: this is the object that the web component .js file must populate with all the client-side API functions that the .spec file declares in it's "api"
section. Some apis can also be implemented in serverside scripting, see "Serverside scripting" section of the Specification page.

® svyHandlers: this is the object that contains all handlers that the .spec file declares in it's "handlers" section. It is pre-populated by Servoy, so the

handlers are already there, ready to be used.
® svyServoyapi: this is an API that Servoy provides to the component - if the component needs to do manual ‘apply’ or other operations. See the servo

yApi section below.

The onDataChangeCallback function in the example above is used as a callback of the ondatachange spec configuration for a dataprovider.

The template/html for the component above looks like this:

<i nput type="text" style="w dth: 100% height:100% background-col or: {{nodel.background}};"
ng- nodel =" nodel . dat aProvi der" title="{{nodel.tool Ti pText}}"
svy-aut oapply svy-format="nodel .format" ng-click="onCick($event)"/>

There the various properties are taken from the model for specific html attributes. You can also see some servoy-provided directives used (the ones starting
with "svy-").

A handler call (handlers.x()) to the server returns a promise (http://docs.angularjs.org/api/ng.$q) to which the web component can register a callback - so that
an event/handler that executes on the server can return a value to the web component's call.

G) Note about directive/WebComponent received attributes
A WebComponent directive should expect that the attributes it receives (except for svyApi) can completely change.

For example when the record shown by a component changes the svyModel gets changed by reference. So be careful about caching model
contents and accessing some model content only in the link method of the directive for example (which will not be called again when only the
displayed record changes).

If you write any repeater components (such as custom portals/table views/list views) you should make sure you don't change the svyApi that you
give to the same child WebComponent directive (and which was populated by that directive initially) when the record that it displays changes.

ServoyApi

The servoyApi is a Servoy specific api which can be used by web components to interact with the server. It must be declared in the private scope of the
component.

component.js

angul ar . nodul e(' nypackageConponent' ,[' servoy']).directive(' nypackageConponent', function() {

return {
restrict: 'E,
scope: {

nodel : "=svyModel ",

svyServoyapi: "=

h

The servoyApi provides the following methods:

Method Parameters Description

https://wiki.servoy.com/pages/viewpage.action?pageId=1869552#Specification(.specfile)-documentingProperties
https://wiki.servoy.com/pages/viewpage.action?pageId=1869552#Specification(.specfile)-documentingHandlers
https://wiki.servoy.com/pages/viewpage.action?pageId=1869552#Specification(.specfile)-example
https://wiki.servoy.com/pages/viewpage.action?pageId=1869552
https://wiki.servoy.com/pages/viewpage.action?pageId=1869552#Specification(.specfile)-serverScripting
https://wiki.servoy.com/pages/viewpage.action?pageId=1869552#Specification(.specfile)-example
http://docs.angularjs.org/api/ng.$q

4 of 7

Pushes a changed dataprovider value of the component to the server (sets it in the actual record). So this is the

apply propertyName
only way to acutally make the server's data aware of browser-side changes to ‘dataprovider' typed properties.

— the name of the
property of type
dataprovider

It is used internally by the svy-autoapply directive, but it can also be called directly by the web component itself.

For example the radio button manually pushes the new value to the server when the radio is clicked (without
using svy-autoapply):

radio.js

$scope. radi o i cked = function()

{
$scope. nodel . dat aProvi der =
$scope. nodel . val uel i st 1 D[0] . real Val ue;
$scope. svyServoyapi . appl y(' dat aProvi der")
}

@ IMPORTANT

In order to be able to change server-side dataprovider values using apply, the .spec file must declare
that dataprovider property from the model as pushToServer: allow or higher. Otherwise the server
will reject the dataprovider value updates and log a change denied warning.

https://wiki.servoy.com/display/DOCS/Provided+directives%2C+filters%2C+services+and+model+values#Provideddirectives,filters,servicesandmodelvalues-autoApply
https://wiki.servoy.com/pages/viewpage.action?pageId=1869552

50f 7

callServer
SideApi

formWwillS
how

methodName

— the name of the
serverside method to call

args

— the arguments of the
serverside method

formname

— the name of the form
which will be shown

relationname

— the name of the
relation (optional)

formindex

— the formindex in the
tabpanel (optional)

Used on the client side to call a function which is defined in the server side api of the component. Since Servoy
8.2, api must be defined in special category of the spec: internalApi

component_server.js

"internal Api ":
{
"mycal | back": {
"returns": "string",
"paraneters": [
{ "nane":"nanme", "type":"string" },

{ "name":"type", "type":"string" }

It returns a promise of angular where the then function will give you the return value of the callback.

component_server.js

$scope. nycal | back = function(nane, type)

{
}

return "sonethi ng";

In the controller or link function of the component, "mycallback" can be invoked via

callServerSideApi:

component.js

$scope. servoyApi . cal | Server Si deApi ("“nycal | back",

["string", "1"]).then(
function(retValue) {

consol e. | og(retVal ue);

}

@ IMPORTANT

Beware that callServerSideApi does not send outstanding model changes to server, this should be

handled by sending new values as parameters and modifying model server-side.

Prepare the form for showing. Example switching tabs in the tabpanel component:

tabpanel.js

function setFornVisi bl e(tab, event)

{
if (tab.containsFormn d)

$scope. svyServoyapi . f or MW | | Show(

t ab. cont ai nsForm d,

It returns a $g promise.

tab. rel ati onNane) ;

60of 7

hideForm

getFormU

rl

formname

— the name of the form
to hide

relationname

— the name of the
relation (optional)

formindex

— the formindex in the
tabpanel (optional)

formnameThatWillShow

— the name of the form
to hide (optional)

relationnameThatWillS
how

— the name of the
relation (optional)

formindexThatWillShow

— the formindex in the
tabpanel (optional)

formName

Hides the form. The outcome of the returned angular promise is a boolean, which is true if the form was hidden.

Used by the tabpanel to hide the previously selected tab.

tabpanel.js

$scope. sel ect = function(tab)
{
if (tab && tab. contai nedForm & !tab. acti ve)
{
//first hide the previous form
var prom se = $scope. svyServoyapi . hi deFor n(
$scope. nodel . t abs[$scope. nodel . t abl ndex -1]);
promi se. t hen(functi on(ok)
{
$scope. nodel . t abl ndex = get Tabl ndex(t ab) +1;
//show the selected form
$scope. svyServoyapi . formW | | Show

tab. contai nedForm tab. rel ati onNane) ;
tab. active = true;

1}

use the last 3 arguments to let the server directly know if the form that was give can be hidden then show
immediately the other form and push that data . This way you won't notice stale data, because the new forms
data is pushed sooner then when you ask in 2 points in time first to hide the current one and then to show the
next one. The code would then be something like this:

$scope. sel ect = function(tab)

{
if (tab && tab. contai nedForm && !tab. active)
{
//first hide the previous form
var prom se = $scope. svyServoyapi . hi deFor n{
$scope. nodel . t abs[$scope. nodel . t abl ndex -1],
null, null,tab.contai nedForm tab.relationNane);
promi se. t hen(functi on(ok)
{
$scope. nodel . t abl ndex = get Tabl ndex(t ab) +1;
/'l show the selected form
tab. active = true;
b
}
}

Return the URL of a form. It can be used together with ng-include to include a

form in the component template:

component.html

<di v ng-i ncl ude="svyServoyapi . get For mJr| (myFor nNane) " ></di v>

https://docs.angularjs.org/api/ng/directive/ngInclude

7of 7

startEdit

getFormC
omponen
tElements

isInDesig
ner

isinAbsol
uteLayout
(since
Servoy
8.2.2)

propertyName

— the name of the
property which is edited

propertyName

— the name of the
property form
component property
where the template
should be get for

templateUUID
— the template UUID that

the property has as its
model value.

Signal that the editing of a property has started, usually at focus gained.
It is automatically used internally by the svy-autoapply directive.
In case svy-autoapply is not used, startEdit can be called manually by the component itself to notify the server

that the record should go into edit mode (by giving the name of the model 'dataprovider' typed property):

component.html

<i nput ng-focus="svyServoyApi.startEdit('dataprovider')"/>

This api is used form component that use the "formcomponent" property type for 1 or more of its model
properties. The model value should be given and the name of the property itself.

This method returns that a compiled dom elements which can be copied/appended into the right place in the
dom of the component.

returns true when the component is shown in the designer at runtime this method will return false.

This way a component can show something more, like some sample data (a valuelist component can show a
few rows of data so it displays nicely)

returns true when the component is in absolute layout form, false when it is in responsive form

https://wiki.servoy.com/display/DOCS/Provided+directives%2C+filters%2C+services+and+model+values
https://wiki.servoy.com/display/DOCS/Provided+directives%2C+filters%2C+services+and+model+values#Provideddirectives,filters,servicesandmodelvalues-autoApply

	Client side logic (.js file)

