1of 19

Foundset property type

Purpose of this property type

Foundset property value in browser scripting

Adding a change listener

Defining/using a foundset property with a random set of dataproviders

Defining/using a foundset property with a fixed set of dataproviders

Defining/using a foundset property that provides default formatting information for columns
Defining initial load and listener options for a foundset property

Linking other "foundset aware" property types to a foundset property

Runtime property access

Combining Foundset Property Type, Foundset Reference Type, Record type and client-to-server scripting calls
$foundsetTypeUtils helper methods

Purpose of this property type

@ This page is written mostly for NG web component creators, not for Servoy developers that just want to use web components. You might want to
view general Servoy Foundset documentation instead.

The 'foundset' property type can be used by web components to access/change a foundset's data/state directly from the browser.

The foundset typed property in the browser will work based on a 'viewport' of the server's foundset. The viewport is controlled directly by the component's
code. Server will adjust foundset viewport bounds/contents only when needed due to data changes, deletes, inserts...

The foundset property also gives the possibility of knowing/changing the selection of the foundset.

For advanced uses, the foundset property can be linked to/interact with other property types (dataprovider, tagstring, component, ...), so that those other
properties will provide a viewport as well - representing the same rows/records as in the foundset's viewport. The properties that support foundset view of
data will allow the web component to specify a "forFoundset: "[foundsetPropertyName]" in their own property's description in the .spec file.

For foundset property types Servoy Developer allows (in properties view) one of the following:

® a (parent) form's foundset

® arelated foundset

® a separate foundset (of any table; similar to JSDatabaseManager.getFoundset()). When this option is chosen the user can also choose whether or
not the separate foundset should load all records initially. (if not checked, contents can be loaded at any time from scripting)

® "-none -" which means that you are going to set that foundset at runtime through scripting.

Foundset property value in browser scripting

In browser js, a foundset property value has the following content:

Browser side provided property content in model

nyFoundset: {

foundsetld: 2, // an identifier that allows you to use this foundset via the 'foundsetRef' type;
/1 when a 'foundset Ref' type sends a foundset fromserver to client (for exanple
/1 as a return value of call ServerSideApi) it will translate to this identifier
/1 on client (so you can use it to find the actual foundset property in the nodel if
/] server side script put it in the nodel as well); internally when sending a
/1 'foundset' typed property to server through a 'foundsetRef' typed argunent or prop,
/1 it will use this foundsetld as well to find it on server and give a real Foundset

serverSize: 44, // the size of the foundset on server (so not necessarily the total record count
/1 in case of |arge DB tables)
viewPort: {
// this is the data you need to have | oaded on client (just request what you need via provided
/] | oadRecordsAsync or | oadExtraRecordsAsync)
start|ndex: 15,
si ze: 5,
rows: [{ _svyRowl d: 'soneRow dHASH1', nane: "Bubu", type: 2 },
{ _svyRowid: 'someRowl dHASH2', nane: "Ranger", type: 1 },
{ _svyRowl d: 'soneRow dHASH3', nane: "Yogy", type: 2 },
{ _svyRowid: 'someRow dHASH4', nane: "Birdy", type: 3 },
{ _svyRowid: 'someRowl dHASH5', nane: "Wl fy", type: 4 }]

https://wiki.servoy.com/display/DOCS/The+Servoy+Foundset

20f 19

sel ect edRow ndexes: [16], // array of selected records in foundset; indexes can be out of current
/1 viewPort as well
sort Col umms: 'orderid asc', // sort string of the foundset, the sanme as the one used in scripting for
/1 foundset.sort and foundset. get Current Sort
mul ti Select: false, // the nultiselect node of the server's foundset; if this is false,
/'l sel ect edRow ndexes can only have one itemin it
hasMoreRows: false, // if the foundset is large and on server-side only part of it is |oaded (so
/1 there are records in the foundset beyond 'serverSize') this is set to true;
/1 in this way you know you can |load records even after 'serverSize' (requesting
/1 viewport to |load records at index serverSize-1 or greater will |oad nore
/] records in the foundset)
columFormats: { nane: (...), type: (...) }, // columFormats is only present if you specify
/1 "provi deCol umFormats": true inside the .spec file for this foundset property;
/1 it gives the default colum formatting that Servoy would nornally use for
/1 each colum of the viewport - which you can then also use in the
/1 browser yourself

/**
* Request a change of viewport bounds fromthe server; the requested data will be |oaded
* asynchronously in 'viewPort'

* @aramstartlndex the index that you request the first record in "viewPort.rows" to have in
* the real foundset (so the beginning of the viewPort).

* @aram si ze the nunber of records to load in viewPort.

* @eturn a $q pronise that will get resolved when the requested records arrived browser-

* side. As with any promi se you can regi ster success, error callbacks, finally,
* See JSDoc of Request | nfoProni se.requestlnfo and ChangeEvent.request| nfos
* for nore informati on about determning if a listener event was caused by this call.
*
/

| oadRecor dsAsync(startlndex: nunber, size: nunber): Request!| nfoProm se<any>;

| **

* Request nore records for your viewPort; if the argunent is positive nore records will be
* | oaded at the end of the 'viewPort', when negative nore records will be |oaded at the beginning
* of the 'viewPort' - asynchronously.

* @aram negativeOr PositiveCount the number of records to extend the viewPort.rows with before or

* after the currently | oaded records.

* @aram dontNotifyYet if you set this to true, then the |oad request will not be sent to server

* right away. So you can queue nultiple |oadLess/|oadExtra before sending them
* to server. If false/undefined it will send this (and any previously queued

* request) to server. See al so notifyChanged().

* @eturn a $q pronise that will get resolved when the requested records arrived browser-

* side. As with any promi se you can regi ster success, error callbacks, finally,

* That all ows custom conponent to nmake sure that |oadExtra/loadLess calls from

* client do not stack on not yet updated viewports to result in wong bounds.

* See JSDoc of Request|nfoProni se.requestlnfo and ChangeEvent.request| nfos

* for nore informati on about determning if a listener event was caused by this call.
*/

| oadExt r aRecor dsAsync(negati veOr Posi tiveCount: nunber, dontNotifyYet: bool ean): Request!| nfoProni se<any>;

| **

* Request a shrink of the viewport; if the argument is positive the beginning of the viewport wll
* shrink, when it is negative then the end of the viewport will shrink - asynchronously.

* @ar am negati veOr Posi tiveCount the nunber of records to shrink the viewPort.rows by before or

2 after the currently | oaded records.

* @aramdontNotifyYet if you set this to true, then the |load request will not be sent to server

* right away. So you can queue mnultiple | oadLess/| oadExtra before sending them
* to server. If false/undefined it will send this (and any previously queued

* request) to server. See al so notifyChanged().

* @eturn a $q promise that will get resolved when the requested records arrived browser

* -side. As with any pronise you can regi ster success, error callbacks, finally,

* That all ows custom conponent to make sure that | oadExtra/l oadLess calls from

* client do not stack on not yet updated viewports to result in wong bounds.

* See JSDoc of Request|nfoProm se.requestlnfo and ChangeEvent.request| nfos

* for nmore information about determining if a |istener event was caused by this call.
*/

| oadLessRecor dsAsync(negativeO PositiveCount: nunber, dontNotifyYet: bool ean): Request!| nfoPron se<any>;

30of 19

| *x*

*
*

*
*/
not

*/
sor

*/

If you queue multiple | oadExtraRecordsAsync and | oadLessRecordsAsync by using dontNotifyYet = true
then you can - in the end - send all these requests to server (if any are queued) by calling
this nethod. If no requests are queued, calling this nethod will have no effect. It returns nothing.

i fyChanged: function(),

Sort the foundset by the dataprovi ders/colums identified by sortCol ums.

The nane property of each sortColum can be filled with the dataprovider name the foundset provides
or specifies. If the foundset is used with a conponent type (like in table-view) then the nane is
the nanme of the conponent on who's first dataprovider property the sort should happen. If the
foundset is used with another foundset-Iinked property type (dataprovider/tagstring |inked to
foundsets) then the nanme you should give in the sortColumm is that property's 'idForFoundset' val ue
(for exanple a record 'dataprovider' property linked to the foundset will be an array of val ues
representing the viewport, but it will also have a 'idForFoundset' prop. that can be used for
sorting in this call; this 'idForFoundset' was added in version 8.0.3).

@ar am { JSONArray} sortColums an array of JSONCbjects { nane : dataprovider_id,

direction : sortDirection }, where the sortDirection can be "asc" or "desc".
@eturn (added in Servoy 8.2.1) a $q pronise that will get resol ved when the new sort

will arrive browser-side. As with any promi se you can register success, error

and finally call backs.

See JSDoc of Request|nfoProni se.requestlnfo and ChangeEvent.request| nfos

for nore informati on about determning if a listener event was caused by this call.

t(sortCol ums: Array<{ name: string, direction: ("asc" | "desc") }>): Requestl|nfoProni se<any>;

Request a sel ection change of the selected row i ndexes. Returns a promise that is resolved
when the client receives the updated selection fromthe server. If successful, the array
sel ect edRowl ndexes will al so be updated. |If the server does not allow the selection change,
the reject function will get called with the 'old selection as paraneter.

I f request Sel ecti onUpdate is called a second tinme, before the first call is resolved, the

first call will be rejected and the caller will receive the string 'canceled as the val ue

for the paranmeter serverRows.

E.g.: foundset.request Sel ecti onUpdate([2,3,4]).then(function(serverRows){}, function(serverRows){});

@eturn a $q pronmse that will get resolved when the requested sel ection was updated server-
side. As with any pronise you can regi ster success, error callbacks, finally,
See JSDoc of Request | nfoProm se.requestlnfo and ChangeEvent.request| nfos
for nore informati on about determning if a |listener event was caused by this call.

request Sel ecti onUpdat e(sel ect edRow dxs: nunber[]): Request | nfoProni se<any>;

*/
set

Sets the preferred viewPort options hint on the server for this foundset, so that the next
(initial or new) load will automatically return that many rows, even without any of the | oadXYZ
nmet hods above being cal |l ed.

You can use this when the conponent size is not known initially and the nunber of records the
conmponent wants to | oad depends on that. As soon as the conponent knows how many it wants
initially it can call this nethod.

These can al so be specified initially using the .spec options "initial PreferredVi ewPortSi ze" and
"sendSel ectionViewportlnitially". But these can be altered at runtine via this nethod as well
because they are used/useful in other scenarios as well, not just initially: for exanple when a
rel ated foundset changes parent record, when a search/find is perfornmed and so on.

@aram preferredSi ze the preferred nunber or rows that the viewport should get automatically

fromthe server.

@ar am {bool ean} sendVi ewport WthSelection if this is true, the auto-sent viewport will contain

the selected row (if any).

@ar am {bool ean} centerVi ewportOnSel ected if this is true, the selected rowwll be in the mddle
of auto-sent viewport if possible. If it is false, then
the foundset property type will assune a 'paging'
strategy and will send the page that contains the
sel ected row (here the page size is assunmed to be
pref erredSi ze) .

Pref erredVi ewport Si ze: function(preferredSize, sendVi ewportWthSel ecti on, centerVi ewportOnSel ect ed),

4 of 19

| **

* It will send a data update for a cell (ros & colum) in the foundset to the server.
* Pl ease nmake sure to adjust the viewport value as well not just call this nethod.

* This nethod is useful if you do not want to add angul ar watches on data (so cal cul ated
* pushToServer for the foundset property is set to just "allow). Then server will accept
* data changes fromthis property, but there are no automati c watches to detect the changes

* s0

the conponent nust call this nmethod instead - when it wants to change the data in a cell.

* @aramrowl D the _svyRowl d (so $foundset TypeConstants. RON | D _COL_KEY) colum of the client side row
* @aram col uml D the nanme of the columm to be updated on server (in that row).

* @aram newal ue the new data in that cell

* @aram ol dval ue the old data that used to be in that cell

*/

updat eVi ewport Record(rowl D: string, columlD: string, newvalue: any, oldValue: any): void;

| **

* Add a change listener that is interested in knowi ng of any incomi ng changes (from server)
* for this foundset property. See the "Adding a change |listener" section below for nore information.

*/

addChangelLi stener : function(listener),

| **

* Renoves the given change |istener fromthis foundset property.

*/

renoveChangeli stener: function(listener),

* Receives a client side row D (taken from nyFoundset Prop. vi ewPort. rows[i dx]

* [$f oundset TypeConst ants. ROV | D COL_KEY]) and gives a Record reference, an object

* which can be resol ved server side to the exact Record via the 'record' property type;

* for exanple if you call a handler or a $scope.svyServoyapi.call ServerSi deApi (...) and want

* to

give it a Record as paraneter and you have the row D and foundset in your code,

* you can use this nmethod. E. g: $scope. svyServoyapi.cal |l Server Si deApi ("doSonet hi ngW t hRecor d",

[$scope. nodel . nyFoundset Prop. get Recor dRef ByRowl D(cl i ckedRow d)]) ;

* NOTE: if in your conponent you know the whol e row (so nyFoundset Prop. vi ewPort.rows[idx])
* already - not just the rowiD - that you want to send you can just give that directly to the
* handl er/ server Si deApi ; you do not need to use this method in that case. E. g:

* 1

if you have the index inside the viewort

* $scope. svyServoyapi . cal | Server Si deApi (" doSonet hi ngW t hRecor d",

* 1

[$scope. nodel . myFoundset Prop. vi ewPor t . rows[cl i ckedRowi dx]]);
or if you have the row directly

* $scope. svyServoyapi . cal | Server Si deApi ("“doSonet hi ngW t hRecord", [clickedRow]);

* This nmethod has been added in Servoy 8. 3.

get Recor dRef ByRowl D: functi on(row d)

}

/1 where the return value for sonme of the client side foundset nethods is:

* Besides working like a normal |Prom se that you can use to get notified when some action is done
* (success/error/finally), chain etc., this prom se also contains field "requestlnfo" which can be set

* by the user and could later be reported in sone |listener events back to the user (in case this sane
* action is going to trigger those |listeners as well).
*
* ©@ince 2021.09
*/
interface Request | nfoProm se<T> extends angul ar. | Prom se<T> {
/**
* You can assign any value to it. The value that you assign - if any - will be given back in the

* event object of any listener that will be triggered as a result of the promi se's action. So in
* case the sanme action, when done, will trigger both the "then" of the Promise and a separate
* |istener, that separate listener will contain this "requestlnfo" val ue.

* This is useful for some conponents that want to know i f some change (reported by the |istener)
* happened due to an action that the conponent requested or due to changes in the outside world.
* (eg: Foundset PropertyVal ue.| oadRecordsAsync(...) returns Request|nfoProm se and

50f 19

* ChangeEvent.requestinfos array can return that Request!nfoProm se.requestinfo on the event that
* was triggered by that | oadRecordsAsync)

*/

equest I nfo?: any;

-

foundsetld is controlled by the server; you should not change it

® serverSize is controlled by the server; you should not change it
viewPort initial size can be changed using setPreferredViewportSize. When the component detects that more records that it needs are available, it
care request viewPort contents using one of the two load async methods
® viewPort.startindex and viewPort.size will have the values requested by the async load methods. But if for example you are using data
at the end of the foundset and records are deleted from there then viewport.size will be corrected/decreased from server (as there aren't
enough records). A similar thing can happen to viewPort.startindex. Do not modify these directly as that will have no effect. Use the load
async methods instead.
® viewPort.rows contains the viewPort data. Each item of the array represents data from a server-side record. Each item will always
contain a "_svyRowld" ($foundsetTypeConstants.ROW_ID_COL_KEY in angular world) entry that uniquely identifies the record on server.
Then there's one entry for every dataprovider that the component needs to use (how those are selected is described below). You should
never change the "_svyRowld" entry, but it is possible to change the values of any of the other entries - the new values will be pushed
back into the server side record that they belong to (if pushToServer is set on the foundset property to allow/shallow or deep; see "Data
synchronization" section of https://wiki.servoy.com/display/public/DOCS/Specification).
selectedRowIndexes is an array of selected foundset record indexes. This can get updated by the server if foundset selection changes server
side. You can change the contents of this array to change foundset selection (new selection will be pushed to server). However, the preferred way
of changing the record selection is by using "requestSelectionUpdate".
® sortColumns is a string containing the sort columns of the foundset, like ‘columnA desc,columnB asc'
multiselect represents the foundset multiselect state; do not change it as it will not be pushed to server.
columnFormats represents the default column formats for the columns given in the viewport; do not change this - only server pushes this
information to the client if asked to do so by the .spec file. It is only present if you specify "provideColumnFormats": true inside the .spec file for this
foundset property.
hasMoreRows true if the server side foundset has loaded only a part/chunk of it's records (in case of very large foundsets). In that case there are
records even after 'serverSize'. It is controlled and updated by the server; you should not change it.

Adding a change listener

(available starting with Servoy 8.2)
When updates are received from the server for this foundset property, any listeners registered via .addChangeListener() - see above - will get notified.

This was added in order to improve performance by removing the need for angular watches. You no longer need to add lots of angular watches, deep or
collection watches in order to be aware of incoming server changes to the foundset property. Each such watch would slow down the page - as watches are
triggered a lot for all kinds of user actions or socket traffic. Also the listener can give more detailed information in order to do more granular updates to the Ul
easier.

Look at this change listener from the client side foundset property's point of view, not from the server's point of view. For example a
NOTIFY_FULL_VALUE_CHANGED does not necessarily mean that the server side foundset has changed by reference. It actually means that all client side
contents of the foundset property did change - or might have changed. So it is meant to notify about changes in client side property value.

To add an incoming server change listener to this property type just call:

Adding a change listener (for incomming changes from server)

var | = function(changes) {

/1 check to see what actually changed and update what is needed in browser
IE
$scope. nodel . myFoundset . addChangelLi st ener (1) ;

If you are using foundset linked properties with your foundset property you might want to add the listener as shown here.
The "changes" parameter above is a javascript Object containing one or more keys, depending on what changes took place. The keys specify the type of

change that happened; they can be any of the constants starting with NOTIFY_... from "$foundsetTypeConstants" service. The value gives any extra
information needed for that type of change. Here is what "changes" can contain (one or more of the keys/values listed below):

what "changes" parameter can contain:

/| ChangeEvent
{

/1 1f this change event is caused by one or nore calls (by the conponent) on the | Foundset obj
/1 (like | oadRecordsAsync request Sel ecti onUpdate and so on), and the caller then assigned a value to

https://wiki.servoy.com/display/public/DOCS/Specification

6 of 19

/1 the returned Request|nfoPronise's "requestlinfo" field, then that value will be present in this array.
/1

/1 This is useful for sonme conponents that want to know i f sone change (reported in this ChangeEvent)

/'l happened due to an action that the conponent requested or due to changes in the outside world. (eg:
/1 1 Foundset .| oadRecordsAsync(...) returns Requestl|nfoProm se and ChangeEvent.requestlnfos array can

/1 contain that Request!nfoProm se.requestinfo on the event that was triggered by that | oadRecordsAsync)
/1

// @&ince 2021.09

$f oundset TypeConst ant s. NOTI FY_REQUEST_| NFCS: any[],

/1 If a a full value update was received fromserver, this key is set; if newalue is non-null:

/1 - prior to Servoy version 2021.06: newalue is a new reference, but it will automatically get
/1 the old value's listeners registered to itself

/1 - starting with Servoy 2021.06: the old value's reference will be reused (so the reference of
11 the foundset property doesn't change, just it's contents are updated) and ol dVal ue gi ven
/1 bel ow is actually a shall ow copy of the old value's properties/keys; this can help

I in some conponent inpl enmentations

$f oundset TypeConst ants. NOTI FY_FULL_VALUE_CHANGED: { oldvalue : ..., newalue : ... },

/1 the followi ng keys appear if each of these got updated from server; the names of those
/] constants suggest what it was that changed; ol dval ue and newval ue are the val ues for what changed
/1 (e.g. new server size and old server size) so not the whole foundset property new ol d val ue

$f oundset TypeConst ant s. NOTI FY_SERVER SI ZE CHANGED: { oldValue : ..., newalue : ... },

$f oundset TypeConst ant s. NOTI FY_HAS_MORE_ROWS_CHANGED: { oldvalue : ..., newalue : ... },

$f oundset TypeConst ants. NOTI FY_MJULTI _SELECT_CHANGED: { oldvalue : ..., newalue : ... },

$f oundset TypeConst ant s. NOTI FY_COLUWN_FORVATS CHANCGED: { oldvalue : ..., newalue : ... },

$f oundset TypeConst ant s. NOTI FY_SORT_COLUWNS_CHANGED: { oldvalue : ..., newalue : ... },

$f oundset TypeConst ant s. NOTI FY_SELECTED ROW | NDEXES_CHANGED: { oldvalue : ..., newalue : ... },

$f oundset TypeConst ant s. NOTI FY_VI EW PORT_START_| NDEX_CHANGED: { oldvalue : ..., newalue : ... },

$f oundset TypeConst ant s. NOTI FY_VI EW PORT_SI ZE CHANGED: { oldvalue : ..., newalue : ... },

$f oundset TypeConst ant s. NOTI FY_VI EW PORT_ROAS_COMPLETELY_CHANGED: { oldValue : ..., newalue : ... },

/1 (ADDED in Servoy 2022.03)

/Il This key is in the change event if the foundset spec property is configured "foundsetDefinitionListener
true,

/'l see "Defining initial |oad options for a foundset property" on this page. for nore info

$f oundset TypeConst ant s. NOTI FY_FOUNDSET_DEFI NI TI ON_CHANGE: bool ean,

/1 if we received add/renpve/ change operations on a set of rows fromthe viewport, this key

/1 will be set; as seen below, it contains "updates" which is an array that holds a sequence of

/1 granul ar update operations to the viewport; the array will hold one or nore granular add, renpve
/1 or update operations;

/1

/| BEFORE Servoy 8.4: all the "startlndex" and "endl ndex" val ues below are relative to the viewort's
/| state after all previous updates in the array were already processed (so they are NOT relative to
/1 the initial or final state of the viewport data!). Updates can come in a random order so there is
/1 NO guarantee related to each change/insert/del ete i ndexes pointing to the correct new data in the
/1 final current viewport state

/1

/1 STARTING WTH Servoy 8.4: all the "startlndex" and "endl ndex" val ues below are relative to the

/1 viewport's state after all previous updates in the array were al ready processed. But due to sone
/'l pre-processing that happens server-side (it nerges and sorts these ops), the indexes of update

/] operations THAT PO NT TO DATA (so ROAS_| NSERTED and ROAS_CHANGED operations) are relative also to
/1 the viewport's final/current state, so after ALL updates in the array were already processed

/1 (so these indexes are correct both related to the internediate state of the viewport data

/1 and to the final state of viewport data).

/1 This neans that it is now easier to apply U changes to the conponent as these granul ar updates
/] GUARANTEE that if you apply themin sequence (one by one) to the conponent's U (delete, insert and
/1 change included) you can safely use the indexes in there to get new data fromthe present state
/1 of the viewport.

/1

/1 indexes are 0 based

$f oundset TypeConst ant s. NOTI FY_VI EW PORT_ROW UPDATES_RECEI VED: {

/| DEPRECATED in Servoy 8.4: granular updates are nuch easier to apply now, see comnment above
/1 Added in 8.3.2; sonetines know ng the old

/1 viewport size hel ps cal culate i ncomm ng granul ar updates easier

$f oundset TypeConst ant s. NOTI FY_VI EW PORT_ROW UPDATES_OLD_VI EWPCRTSI ZE: .. .,

/] starting with 8.3.2 you can use instead of 'updates' bel ow the new constant;
/1 $f oundset TypeConst ant s. NOTI FY_VI EW PORT_ROW UPDATES

/] before 8.3.2 just use 'updates';

updates : [

7 of 19

type : $foundset TypeConst ant s. ROANS_CHANGED,
startlndex : ...,
endl ndex :

/1 NOTE: insert signifies an insert into the client viewport, not necessarily

/1 an insert in the foundset itself; for exanple calling "l oadExtraRecordsAsync"
/1 can result in an insert notification + bigger viewdort size notification,

/1 wth renovedFronVPEnd = 0

type : $foundset TypeConst ants. ROAS_| NSERTED,

startlndex : ...,

endl ndex : ...,

/| DEPRECATED starting with Servoy 8.4; it would always be 0 here

/] as server-side code will add a separate del ete operation instead - if necessary
/1 BEFORE 8.4: when an | NSERT happened but viewport size renmmined the sane, it was
/] possible for some of the rows that were previously at the end of the viewport
/1 to slide out of it; "renovedFronVPEnd" gives the nunber of such rows that were
/1 removed fromthe end of the viewport due to this insert operation;

renovedFr onVPENd :

/1 NOTE: delete signifies a delete fromthe client viewport, not necessarily

/'l a delete in the foundset itself; for exanple calling "l oadLessRecordsAsync" can
/] result in a delete notification + smaller viewport size notification,

/1 with appendedToVPEnd = 0

type : $foundset TypeConst ants. RONS_DELETED,

startlndex : ...,

endl ndex : ...,

/| DEPRECATED starting with Servoy 8.4; it would al ways be 0 here

/'l as server-side code will add a separate insert operation instead - if necessary

/] BEFORE 8.4: when a DELETE happened inside the viewport but there were nore rows

/] available in the foundset after current viewport, it was possible for sone of those
/'l rows to slide into the viewport; "appendedToVPEnd " gives the nunber of such rows
/1 that were appended to the end of the viewport due to this del ete operation
appendedToVPENd :

To make the "updates” part above clearer:

Let's say you had in
your viewPort (before
the incomming
changes got applied to

it):

rowl
row2
row3
row4
rows

Then you got these "updates" from the listener (before Servoy 8.4):

updat es:
"newRowl"

Il

{ type:

2,

inserted
$f oundset TypeConst ant s. ROAS_| NSERTED,
end: 2, renovedFronVPEnd: 1 },

[/ update row to "newRow2" contents

{ type:

4,

$f oundset TypeConst ant s. ROAS_CHANGED,
end: 4}

8of 19

that would be equivalent to the following (starting with Servoy 8.4):

updates: [
/1 "newRowl" inserted
{ type: $foundset TypeConst ants. ROAS_| NSERTED,
start: 2, end: 2},

/1 update row to "newRow2" contents
{ type: $foundset TypeConst ants. ROAS_CHANGED,
start: 4, end: 4}

/1 "rows" slides out of viewport due to

/1 the initial insert

{ type: $foundset TypeConst ants. ROA5S_DELETED,
start: 5, end: 5},

that means that the
viewport has changed
like this after the first
update got applied (<
8.4):

rowl
row2
newRowl
row3
row4

and for (>= 8.4)

rowl
row2
newRowl
rows3
rowd
rows

and like this after the
second (and third for
>= 8.4) update got
applied:

rowl
row2
newRowl
row3
newRow2

Please note the when your listener is called the actual contents of the viewPort are already updated. So, at that time your viewport already looks like the last
version above. You might find (for Servoy < 8.4) what $foundsetTypeUtils below provides useful depending on how you plan on using this listener. For 8.4
and higher you no longer need to compute indexes like that client-side (because the server pays attention to process all changes in such a way that the

indexes in the ones that need to change data are the correct ones compared to the end state of the changed viewport).

90of 19

1 Always make sure to remove listeners when the component is destroyed

It is important to remove the listeners when your component's scope is destroyed. For example if due to a tabpanel switch of tabs your form is
hidden, the component and it's angular scope will be destroyed - at which point you have to remove any listeners that you added on model
properties (like the foundset property), because the model properties will be reused in the future (for that form when it is shown again) and will
keep any listeners in it. When that form will be shown again, it's Ul will get recreated - which means your (new) component will probably add the
listener again.

If you fail to remove listeners on $scope destroy this will lead to memory leaks (model properties will keep listeners of obsolete components each
time that component's form is hidden, which in turn will prevent those scopes and other objects that they can reference from being garbage
collected) and probably weird exceptions (obsolete listeners executing on destroyed scopes of destroyed components).

Example of removing a listener:

How to remove listeners on scope destroy

$scope. $on(" $destroy", function() {
if (foundsetlListener && $scope. nodel . nyFoundset) $scope. nodel . nyFoundset .
renoveChangeli st ener (f oundset Li st ener) ;

b)s

Defining/using a foundset property with a random set of dataproviders

A web component might want to work with as many dataproviders available in the viewport as the developer wants. Servoy Developer will allow selecting
any number of dataproviders of the foundset to be sent to browser web component property value (through the properties view for the foundset typed
property; use sub-property ‘dataproviders').

For example a component that shows graphical representation of data might allow adding as many 'categories' to it as the developer wants to (each
category getting data from one viewport column/dataprovider) .
.spec file

"myFoundset": { "type": "foundset", "dynam cDataproviders": true }

So the component has a property called "myfoundset" that it wants linked to any foundset chosen in ServoyDeveloper, and it allows the developer to choose
in properties view any number of dataproviders from the foundset.

browser js

Let's say the developer has chosen a foundset and 3 dataproviders (for example 3 database columns) from it. Those would generate for example a viewPort
like this inside the browser property.

Browser side provided property content in model

nyFoundset: {

(...)
viewPort: {
startl| ndex: 15,
si ze: 2,
rows: [{ _svyRowid: 'sonmeRowi dHASH1', dpO: (...), dpl: (...), dp2: (...) },
{ _svyRow d: 'sonmeRow dHASH2', dpO: (...), dpl: (...), dp2: (...) } 1,
(...)
b
(...)

Notice the fixed column names: dp0, dp1, ... dp[N-1] where N is the number of foundset dataproviders that the developer has chosen.

10 of 19

1 Only foundset dataproviders are supported

When using the dataproviders inside foundset property type (static or dynamic), only the record dataproviders are supported - so no form/global
variables.

Defining/using a foundset property with a fixed set of dataproviders

A web component can specify in it's .spec file that it requires a foundset property and a fixed number of dataproviders from it. The foundset and required
dataproviders are then selected by the developer when creating a solution (using the properties view, 'dataproviders' sub-property).

.spec file

"myFoundset": { "type": "foundset", "dataproviders": ["firstNane", "lastNane"] }

So the component has a property called "myfoundset" that it wants linked to any foundset chosen in ServoyDeveloper, and it needs two dataproviders from
that foundset to be present in the foundset's property viewport.

browser js
Let's say the developer has chosen a foundset and selected for "firstName" a foundset dataprovider (for example a database column called

parentFirstName) and for lastName another dataprovider (for example a database column called parentLastName). Those would generate for example a
viewport like this inside the browser property:

Browser side provided property content in model

nmyFoundset : {
(-..)

viewPort: {
start|ndex: 15,
size: 2,
rows: [_svyRow d: 'sonmeRow dHASH1', firstNane: (...), lastNanme: (,

{)}
{ _svyRowid: 'someRow dHASH2', firstNanme: (...), lastName: (...) }],

In this way any foundset dataprovider/column can be mapped to one of the two dataproviders that the component requires. The actual foundset dataprovider
name is not even used in browser js.

Defining/using a foundset property that provides default formatting information for columns

A web component can specify in it's .spec file that it requires the foundset property to provide default formatting information for it's columns. We will use a
foundset property with fixed number of dataproviders as an example, but it will work the same for other ways of specifying the dataproviders.

.spec file

"myFoundset": { "type": "foundset", "dataproviders": ["inage", "age"], "provideColumFormats": true }

So the component has a property called "myfoundset” that it wants linked to any foundset chosen in ServoyDeveloper, and it needs two dataproviders from
that foundset to be present in the foundset's property viewport. For each of the two columns it will also receive default formatting information.

browser js

Let's say the developer has chosen a foundset and selected for "image" a foundset dataprovider (for example a database column called 'photo) and for age
another dataprovider (for example a database column called 'estimatedStructureAge"). Those would generate a viewport and formatting information similar
to the following inside the browser property (note that the column format actual contents might change as needed - this is what Servoy default components
receive as well for their component properties):

11 of 19

Browser side provided property content in model

nmyFoundset : {

(coa)
viewPort: {
startlndex: 15,
size: 2,
rows: [{ _svyRow d: 'soneRow dHASH1', image: (...), age: (...) },
{ _svyRowid: 'sonmeRow dHASH2', inmage: (...), age: (...) } 1,
(con)
bo
col umFormats: {
i mge: {
pl aceHol der: nul |,
maxLengt h: 2147483647,
i sNurmber Val i dator: fal se,
edit: null,
i sMask: false,
di splay: null,
type: "MED A",
al | onedChar acters: null
bo
age: {
pl aceHol der: nul |,
percent: "%,
i sNunmber Val i dator: fal se,
edit: null,
i sMask: false,
di spl ay: "#, #00. ###"
type: "NUMBER',
al | onedChar acters: null
}
}

The formatting information is similar to what default Servoy components get for their format properties, so it could be used in a similar way (for example
through $formatterUtils; for more details check out the source code - servoyformat.js, textfield.js).

Defining initial load and listener options for a foundset property

A web component can specify in it's .spec file that initially, at first show or each time the foundset gets completely refreshed it wants to automatically receive
a number of rows in the viewport. This is useful to avoid some round trips between client and server and send data directly. It is configurable because some
components may want to send no records initially while others might need to send many. This is done via the initialPreferredViewPortSize option. Default
value is 50.

There is another option sendSelectionViewportlnitially which allows a component to say wether this set of initial rows should contain the selected row (if
any) or start at first row. The selected row will be in the center of this initial viewPort if possible when this option is "true". This option is "false" by default.

Both of these options can be altered at runtime by browser-side scripting using "setPreferredViewportSize(...)"; see above.

A foundset based component can specify (starting with Servoy 2022.03) if it wants to know when the foundset's definition was changed, by adding a foundse
tDefinitionListener property to the foundset property with the value true. If that is true, then the foundset's ChangeListener will also get

a foundsetDefinitionChanged event passed in when the definition (sql query) of the underlying foundset is changed. This can be handy if you are in a
grouped mode and the root foundset only has 200 records loaded but through grouping you really show 1000 records and because of a filter that is applied
to the root the first 200 are not changed but the change is somewhere visible after that. Then a grouping table should reflect that by refreshing the groups.
Don't use this property if you don't need it because it is not without cost - to calculate the query change and fire the event.

.spec file
"myFoundset": { "type": "foundset", "dataproviders": ["inmage", "age"],
"initial PreferredViewPortSi ze": 130,
"sendSel ectionViewportlnitially": true,
"foundset Defi ni tionLi stener": true
}

Linking other "foundset aware" property types to a foundset property

12 of 19

Other property types can have content that is 'linked' to foundset records in some way. These property types can be configured in the .spec file as shown
below - linking to any other property they have defined with 'foundset’ type. When they are linked to a foundset, their javascript value in the browser is no
longer only one value, but a viewPort of values (or it will also contain a viewPort of values - the exact content is property type specific) - corresponding to the
records loaded in the linked foundset property's viewPort.

In this scenario, the viewPort of the foundset value only contains '_svyRowld' if it's own .spec property configuration doesn't list a dynamic or static list of
dataproviders ("dataproviders" : [...] or "dynamicDataproviders": true), and the "foundset aware" property type value will have the viewPort contents in it
(check each "foundset aware" type to see how that works, as it could differ from type to type).

Component type (child components that are linked to a foundset - for tables, lists, ...) or custom object types built of/containing other "foundset aware"
property types (let's call them 'configurations' - can be used to build lightweight pure HTML tables, lists, ...) are the most common uses in this area.

Examples of foundset aware types are 'component’, ‘dataprovider’, 'tagstring'.

.spec file

One child component linked to the foundset :

"myFoundset": "foundset",
"chil dEl ement” : { "type" : "conponent", "forFoundset": "myFoundset" }

Multiple child components (array of them, notice 'elementConfig' that specifies a config value for each contained element) linked to the foundset. This type of
linking is currently used by Servoy's tableviews, listviews and portals:

"myFoundset": "foundset",
"chil dEl ements" : { "type" : "conponent[]", "elementConfig" : {"forFoundset": "nyFoundset"} }

Have a look at ‘component' page to see how these two properties above will look like in browser js.

'Configuration' object for sending other "foundset aware" types as viewPorts follows. In this case the value of those properties - so for example
'myconfigurations[0].mydataprovider' or 'myconfiguration.mydataprovider' will be arrays representing the foundset's viewport, not simple values. If the
property is really linked to the record (so not global/form variables but record DP/column) then it will get a special 'idForFoundset’ value - for example
'myconfiguration.mydataprovider.idForFoundset' - in it as well; that can be used with the foundset property's sort API. This 'idForFoundset' was added in
version 8.0.3. (Note: "forFoundset" usage for "dataprovider" does not yet allow changing the value, but there is a case for making that work)

"myFoundset": "foundset",
"myconfiguration": "MyConfig", // or:
"myconfigurations": "MyConfig[]"

(...)
"types": {
"MyConfig": {
"mydat aprovider" : { "type" : "dataprovider", "forFoundset": "nyFoundset"}
"mytagstring" : { "type" : "tagstring", "forFoundset": "nyFoundset"}
}
}

@ Foundset change listener & other foundset linked properties (starting with 8.2)

In case you want to use a foundset property type change listener (for incomming changes from server) combined with other foundset linked

properties such as dataproviders with "forFoundset”, a change of a row on server will send changes both to the foundset property and to the
dataprovider properties linked to that foundset. In order to make sure that your foundset notification update code executes after all property

changes have been applied (so the dataprovider properties are also up-to-date) you can use:

var | = function(changes) {
/1 wait for all incom ng changes to be applied to properties first
$webSocket . addl ncom ngMessageHand! i ngDoneTask(functi on() {
/1 now check to see what actually changed and update what is needed in browser
/| because even other "forFoundset" properties are up-to-date
}
¥
$scope. nodel . myFoundset . addChangelLi st ener (1) ;

Runtime property access

https://wiki.servoy.com/display/DOCS/Component+%28child%29+property+type
https://wiki.servoy.com/display/DOCS/Component+%28child%29+property+type
https://wiki.servoy.com/display/DOCS/Array+property+type
https://wiki.servoy.com/display/DOCS/Component+%28child%29+property+type

13 of 19

At runtime, the foundset property is accessible in (server-side) javascript. If a bean named "myFoundsetBasedBean" has a foundset property named
"myFoundset" it can be accessed like this:

el enent s. nyFoundset BasedBean. nyFoundset

That property gives access in scripting to:

® the real underlying foundset
® to the dataproviders that the property will send to the client webcomponent (dataproviders contains key-value pairs where key is the name of the
column used in web component client side scripting and value is the name of the foundset column attached to that).

Both myFoundset. foundset and myFoundset. dataproviders are read-write properties under the foundset property type.

Setting myFoundset. foundset is only allowed if at design time you selected either "- none -" or a separate foundset for that property (so they are not related
to the form directly). Parent form foundset and foundsets related to the form foundset are managed by Servoy automatically and they cannot be set through
scripting at runtime. Of course you can alter the contents loaded by those form/related foundsets at runtime, but you cannot change completely the foundset
by reference.

Examples:

/] el ements. nyFoundset BasedBean. myFoundset . f oundset gi ves access to the

/1 underlying Servoy foundset used by this property

appl i cation. out put (el enent s. nyFoundset BasedBean. myFoundset . f oundset . get Sel ect edl ndex())
el enent s. nyFoundset BasedBean. nyFoundset . f oundset . | oadRecor ds(sone@BSel ect)

/'l el ements. nyFoundset BasedBean. nyFoundset . dat aprovi ders gi ves access to the
/] configured dataproviders of the Servoy foundset property; probably nost useful
/1 in conbination with dynam cDat aprovi ders: "true"
el enent s. myFoundset BasedBean. nyFoundset . dat aprovi ders = {
dpl: "userN cknane",
dp2: "userRevi ewRati ng",
dp3: "nunber O Pur chasedl t ens”
}
if (!el emrents. nyFoundset BasedBean. myFoundset . dat aprovi ders. rati ng)
el ement s. myFoundset BasedBean. nyFoundset . dat aprovi ders.rating = "userRevi ewRati ng";

(Starting with Servoy 8.1.3) Foundset typed properties can be assigned directly to as well. This will create a completely new foundset type property value (if
you are not assigning a new foundset). Assigning a completely new foundset value to a foundset type property allows you to configure as well some of the
things that are normally defined in the .spec file:

/'l el ements. nyFoundset BasedBean. nyFoundset is the foundset typed property
var nyNewFoundset = ...; // sonme Servoy foundset
el enent s. nyFoundset BasedBean. nyFoundset = {
foundset: nyNewFoundset,
dat aprovi ders: {
dpl : "customer Name",
dp2 : "city"
b
sendSel ectionViewortlnitially: false,
initial PreferredViewPortSize: 15
b

All keys in the descriptor object above are optional except for "foundset”. So if you don't provide "dataproviders" or "sendSelectionViewportinitially" or
"initialPreferredViewPortSize" default values will be used for them. In a similar way you can simply set the foundset directly:

/'l el ements. nyFoundset BasedBean. myFoundset is the foundset typed property

var nyNewFoundset = ...; // sonme Servoy foundset

el enent s. nyFoundset BasedBean. nyFoundset = nyNewFoundset; // this will create a new foundset type property val ue
/1 that only sends the rowid (no other columms as dataproviders were not specified) and uses defaults for
sendSel ectionViewportlnitially and initial PreferredVi ewPortSi ze

Combining Foundset Property Type, Foundset Reference Type, Record type and client-to-server
scripting calls

You might wonder - "why is setting a complete new foundset into a foundset typed property from server side scripting helpful?". This is helpful for example in
implementing more advanced tree-like components, that need to operate with multiple foundsets.

14 of 19

In combination with Foundset Reference type (“foundsetRef"), Record Finder type ("rowRef") and calls from client-side scripting to server-side
component scripting, such components can query/create foundsets on server on-the-fly according to different requirements, put them in the model of the
component (for example in a foundset array property that is initially empty []). Then they also store in the properties the "unique id" using the Foundset
Reference type and return that id as well from the server-side scripting call. This means that on the client it has access to the new foundset and it can
identify it via the "unique id". Also if server-side scripting needs a record from a foundset that is already on the client to create it's new foundset (maybe
they need to be related in some way), then all the client has to do is send to the server the foundset reference "unique id" together with the rowld (from
the foundset property type's viewport) of that record and on the server you will be able to find the record using the Record Finder type.

Here is a partial example of what a tree-table might need to do in order to handle large amounts of data properly on all levels:

Client-side .js

function get Chil dFoundSet Hash(par ent Foundset Hash, rowl d, parentLevel G oupCol unml ndex,

}
(
f

newLevel Gr oupCol uml ndex) {
/| parent Foundset Hash cones fromthe foundset referece type property
/] rowmd comes fromthe foundset property type's viewport
/'l parentLevel G oupCol uml ndex and newlLevel G oupCol umml ndex are indexes in
/1 an array property that hol ds dataproviders
var chil dFoundset Proni se;

if (newLevel G oupCol umml ndex) {
chi | dFoundset Promni se = $scope. svyServoyapi . cal | Server Si deApi (" get G oupedChi | dFoundset UUI D",
[par ent Foundset Hash, row d, parentLevel G oupCol umml ndex, newLevel G oupCol umml ndex]);
} else {
chi | dFoundset Pronmi se = $scope. svyServoyapi . cal | Server Si deApi ("get Leaf Chi | dFoundset UUI D",
[par ent Foundset Hash, row d, parentLevel GroupCol umml ndex]);

}

chi | dFoundset Promi se. t hen(function(chil dFoundset UUI D) {
var chil dFoundset = get FoundSet ByFoundset UUl D(chi | dFoundset UUI D) ;
nmergeData(..., childFoundset);
}, function() {
/1 some error happened
(..
b

o)
uncti on get FoundSet ByFoundset UUI D(f oundset Hash) {

if ($scope. nodel . hashedFoundset s)
for (var i = 0; i < $scope. nodel . hashedFoundsets. | ength; i++) {
if ($scope. nodel . hashedFoundset s[i]. foundset Hash == f oundset Hash)
return $scope. nodel . hashedFoundset s[i]. foundset;

return null;

15 of 19

Server-side .js

$scope. get G oupedChi | dFoundset UUI D = functi on(par ent Foundset, parent RecordFi nder, parentLevel G oupCol umml ndex,
newLevel G oupCol uml ndex) {
if (!parent Foundset) parentFoundset = $scope. nodel . nyFoundset . f oundset ;
var childQuery = parent Foundset. get Query();

if (parentLevel G oupCol uml ndex == undefined) {
// this is the first grouping operation; alter initial query to get all first |evel groups
¢...)
} else {
/1 this is an intenedi ate group expand; alter query of parent level for the child
| evel
chil dQuery. groupBy.clear();
chi | dQuery. groupBy. add(chi | dQuery
. col ums|[$scope. nodel . col utms[newLevel Gr oupCol unml ndex] . dat apr ovi der]);
var parent G oupCol umNanme = $scope. nodel . col ums[par ent Level G oupCol unml ndex] . dat apr ovi der ;
chi | dQuery. where. add(chi | dQuery. col unms][par ent G- oupCol utmNane]
. eq(par ent Recor dFi nder (par ent Foundset) [par ent G oupCol utmNane])) ;
}
var chil dFoundset = parent Foundset. dupl i cat eFoundSet () ;
chi | dFoundset . | oadRecor ds(chi | dQuery);
var dps = {};
for (var idx = 0; idx < $scope. nodel.colums.|ength; idx++) {
dps["dp" + idx] = $scope. nodel . col ums|[i dx] . dat aprovi der;
}
$scope. nodel . hashedFoundset s. push({ foundset: {
f oundset: chil dFoundset,
dat aprovi ders: dps,
sendSel ectionViewportlinitially: false,
initial PreferredVi ewPortSi ze: 15
}, foundsetUUI D: chil dFoundset}); // send it to client as a foundset property with a UU D
return chil dFoundset; // return the UUID that points to this foundset (return type will nake
it UUID)

I%

For versions prior to Servoy 8.2 please use "api" instead of "internalApi" below:

16 of 19

.spec file
"serverscript": "nmyconppck/ myconpnane/ myconp_server.js",
¢...)
"nodel ":
{
"colums": { "type": "columbDef[]", "droppable": true },
"hashedFoundsets": { "type": "hashedFoundset[]", "default": [] }
(...)
"types":
{
"col umbDef": {
"dataprovider": { "type": "dataprovider", "forFoundset": "nyFoundset" }
()
b
"hashedFoundset" : {
"foundset": "foundset",
"foundset UUI D': "foundset Ref"
}
b
"internal Api " : {
"get G oupedChi | dFoundset UUI D' : {
"returns" : "foundsetRef",
"paraneters”
[{
"name" : "parent Foundset",
"type" : "foundset Ref"
oA
"name" : "parent RecordFi nder",
"type" : "rowRef"
boo
"name": "parentLevel G oupCol unml ndex",
"type": "int"
boA
"nane": "newLevel G oupCol uml ndex",
"type": "int"
}
]
b
¢...)

For Servoy 8.3 and higher:

In combination with Foundset Reference type (“foundsetRef"), Record type ("record") and calls from client-side scripting to server-side component scripting,
such components can query/create foundsets on server on-the-fly according to different requirements, put them in the model of the component (for example
in a foundset array property that is initially empty []). Then they return from the server-side scripting call the "foundsetld" using the Foundset Reference
return type (so return a Foundset on an api call that has return type ‘foundsetRef"). This means that on the client it has access to the new foundset and it can
identify it via the "foundsetld" in the array-of-foundsets-property.

If server-side scripting needs a record from a client-side foundset in order to create it's new foundset (maybe they need to be related in some way),
then all the client has to do is send to the server the row from client side foundset property's viewport and on the server it will automatically be translated to a
Record by the 'record' property type that is used as argument. Once you have the Record on server you have the foundset as well via Record.foundset.

Similarly, if one needs to send (from client-side) only a foundset as argument to server-side code, it can just give the value of the foundset property to
an argument of type ‘foundsetRef' and it will automatically be translated on server to a Foundset.

Here is a partial example of what a tree-table might need to do in order to handle large amounts of data properly on all levels:

17 of 19

Client-side .js

function get Chil dFoundSet (r owObj Fr onfFoundset sVi ewport, parentLevel G oupCol umml ndex,

/1
/1
/1
/1
/1
/1
/1

/1
/1
/1
/1

/1
/1
/1
/1

/1
/1
/1

/1
/1
/1

newLevel G oupCol uml ndex) {
' r owbj FronfFoundset sVi ewport' cones fromthe foundset (that contributed the expanded row)
property type's viewport so equival ent to sonething |ike
$scope. nodel . f oundset Props[i]. vi ewPort. rows[expandedRow ndex]
' par ent Level G- oupCol uml ndex' and 'newLevel G oupCol umtml ndex' are indexes in
an array property that hol ds the groupi ng col um dat aprovi ders
if 'newLevel G oupCol uml ndex' is undefined, then we are requesting tree |leafs (not groups)
and then the server-side query is a bit different

foundset query needed for |eaf level: Select pk fromorders where Country = ? and City = ? and ...

foundset query needed for internediate grouped | evel; ie. when you want to expand a country group
to next level that is grouped by city: SELECT DI STINCT M N(pk) FROM Custoners Were Country =
"Mexi co" GROUP BY Gity;

as you can see below | try to send abstract things to the server (the client shouldn't really know
real datasource nanes, real colunn/dataprovider names and so on (those can be determ ned on server)
so both client and server code shoul d be done so that these kinds of information never reach the
client in the first place - only as abstract ids or indexes/nanmes of conponent properties)

so server needs to be given the expanded row (it can get the foundset of the Record fromthat) and
the groupCol um (index of the columm) of the child level if that one is an grouped internediate |evel
otherwise, if it is going to request |leafs it should set undefined for "newLevel G oupCol umml ndex"

NOTE: if we could get it nicely fromthe parent foundset's query there would be no use sending the
expanded node's group col utm because that is already available on the server fromthat foundset's
query (group by cl ause)

var chil dFoundset Promi se;

if

(newLevel Gr oupCol uml ndex) {
chi | dFoundset Prom se = $scope. svyServoyapi . cal | Server Si deApi (" get G oupedChi | dFoundset | d",
[rowOnj FronFoundset sVi ewport, parentLevel G oupCol umml ndex, newlLevel G oupCol umml ndex]);

} else {

chi | dFoundset Proni se = $scope. svyServoyapi . cal | Server Si deApi (" get Leaf Chi | dFoundset | d",
[rowObj Fr onFoundset sVi ewport, parentLevel G oupCol umml ndex]);
}

chi | dFoundset Promi se. t hen(function(chil dFoundset|d) {

}

1)

}
(..)
f

var chil dFoundset = get FoundSet ByFoundset | d(chi | dFoundset|d);
nmergeData(..., childFoundset);

function() {
/1 some error happened

(...

uncti on get FoundSet ByFoundset | d(f oundset1d) {

if

($scope. nodel . chi | dFoundset s)
for (var i = 0; i < $scope. nodel.childFoundsets.length; i++) {
if ($scope. nodel . chil dFoundsets[i].foundsetld == foundset!d)
return $scope. nodel . chi | dFoundsets[i];

return null;

18 of 19

Server-side .js

$scope. get G oupedChi | dFoundset | d = functi on(parent Record, parentLevel G oupCol unml ndex,
newLevel G oupCol umml ndex) {

var parent Foundset = parentRecord. f oundset;
var childQuery = parent Foundset. get Query();

i f (parentLevel G oupCol umlndex == undefined) {
/1 this is the first grouping operation; alter initial query to get all first |evel groups
(.)
return;

} else {

/1 this is an intenmediate group expand; alter query of parent level for the child |evel
chi | dQuery. groupBy. cl ear();
chi | dQuery. groupBy. add(chi | dQuery
. col utms[$scope. nodel . col ums[newLevel G oupCol umml ndex] . dat apr ovi der]);
var parent G oupCol umNane = $scope. nodel . col ums|[par ent Level G oupCol umrml ndex] . dat apr ovi der ;
chi | dQuery. where. add(chi | dQuery. col utms[par ent G oupCol unmNane]
. eg(par ent Recor d[par ent G oupCol utmNan®])) ;
}

var chil dFoundset = parent Foundset. dupl i cat eFoundSet () ;
chi | dFoundset . | oadRecor ds(chi | dQuery);

var dps = {};
for (var idx = 0; idx < $scope. nodel . col ums. | ength; idx++) {
dps["dp" + idx] = $scope. nodel.col ums[i dx]. dataprovider;

}

$scope. nodel . chi | dFoundset s. push({
foundset: chil dFoundset,
dat aprovi ders: dps,
sendSel ectionViewportlnitially: false,
initial PreferredViewPortSize: 15
}); // send it to client as a foundset property in the array of foundsets

return chil dFoundset; // return the foudnsetld that points to this foundset (return type
/1 'foundsetRed' will nmake a foundsetID fromthe chil dFoundset)

b3
.spec file
"serverscript": "nmyconppck/ nyconpnane/ myconp_server.js",
(...}
"model ":
{
"colums": { "type": "columDef[]", "droppable": true },
"chi |l dFoundsets": { "type": "foundset[]", "default": [] }
(...)
"types":
{
"col umbDef": {
"dataprovider": { "type": "dataprovider", "forFoundset": "nyFoundset" }
(...)
}
ba
"internal Api " : {
"get G oupedChi | dFoundset | d" : {
"returns" : "foundsetRef",
"paraneters”
[{ "nane" : "parentRecord", "type" : "record" },
{ "nanme": "parentLevel G oupCol uml ndex", "type": "int" },
{ "nanme": "newLevel GroupCol umml ndex", "type": "int" }]
ba

19 of 19

$foundsetTypeUtils helper methods

Starting with Servoy 8.3.2 $foundsetTypeUltils service was added. It's purpose is to help make the foundset property type easier to use.

$foundsetTypeUtils

*/

NOTE: Starting with Servoy 8.4 you no |onger need to use this nethod; see @leprecated
coment .

The purpose of this nmethod is to aggregate after-the-fact granular updates with i ndexes
that are relevant only when applying updates 1-by-1 into i ndexes that are

related to the new final state of the viewport. It only cal cul ates new i ndexes

for updates of type $foundset TypeConstants. ROAN5_CHANGED. (taking into account

any insert/del ete along the way)

@ar am vi ewpor t Rowpdat es what a foundset/conponent property type (viewport) change |istener
woul d recei ve in changeEvent [$f oundset TypeConst ant s. NOTI FY_VI EW PORT_ROW UPDATES_RECE! VED]
[$f oundset TypeConst ant s. NOTI FY_VI EW PORT_ROW UPDATES]

@ar am ol dVi ewport Si ze what a foundset/conmponent property type (viewport) change |istener
woul d receive in changeEvent[$f oundset TypeConst ant s. NOTI FY_VI EW PORT_ROW UPDATES_RECEI VED]
[$f oundset TypeConst ant s. NOTI FY_VI EW PORT_ROW UPDATES QLD VI EWPORTSI ZE]

@leprecated starting with 8.4 this is no |Ionger needed as foundset/conponent/foundsetlinked
property change |listeners guarantee that the rows in inserts and updates have their indexes
relative to the already changed viewport (data in the viewport at those indexes at the
nmonment these listeners trigger does match correctly). So basically calling this nethod woul d
not alter any update operations - they would remain the same.

@eturns an array of $foundset TypeConstants. ROAN5_CHANGED updates with their indexes corrected
to reflect the indexes in the final state of the viewport (after all updates were applied).

coal esceG anul ar RowChanges: functi on(vi ewport Rowlpdat es, ol dVi ewport Si ze);

	Foundset property type

