
1 of 2

Using Table Filters
Servoy provides high-level filtering functionality which may be applied to any database table using the method of the databaseManager addTableFilterParam
API. Table filters have the following properties:

Scope - A filter may be applied to a single database table or, if no table is specified, an entire server connection. A filter will constrain the records
which are returned by any queries that are issued from the Servoy client to the table(s). A filter takes effect immediately upon being added and
remains in effect for the duration of the client session unless programmatically removed. The constraints of a filter apply to all facets of a Servoy
solution, including:

foundsets
related foundsets
value lists

Logical Expression - A filter will contain a logical expression which is evaluated on behalf of records in the filtered table(s). Only records, for which
the expression evaluates to true, will be returned by any queries issued to the filtered table(s). At runtime, the filter will be translated into an SQL
WHERE clauseand appended to the query of any foundset which is bound to the filtered table(s). An expression contains the following components:

Data Provider Name - This is the left-hand operand. It is the name of a single column by which to filter. When filtering an entire server
connection, only tables which contain the named column will be filtered.
Operator - The following operators are supported

= Only records whose column the specified valueequals

< Only records whose column is the specified valueless than

> Only records whose column the specified valuegreater than

>= Only records whose column the specified valuegreater than or equals

<= Only records whose column the specified valueless than or equals

!= Only records whose column does the specified valuenot equal

^ Only records whose column value is null

LIKE Only records whose column matches using the construct (use wildcard '%' characters)SQL LIKE

IN Only records whose column value is in (using the SQL IN construct) a list of values

BETWEEN Only records whose column value is (inclusive) between a list of 2 values

Modifier, used to make case-insensitive queries

|| Modifier used to concatenate two conditions w/ a logical OR

Data Provider Value - This is the right-hand operand and should evaluate to a literal value to be compared with the named column.

Filter Name - When adding a table filter parameter, a filter name may be used to allow for the later removal of a named filter. Multiple parameters
or conditions may be set using the same filter name. In this case, all parameters may be removed at the same time.

Example This is a simple example which filters records in a products table based on the criterion that the status is not discontinued

var success = databaseManager.addTableFilterParam('crm_server','products','product_status','!=',globals.
STATUS_DISCONTINUED,'productfilter');

Example This example shows a two filters using the operatorIN

There are only two ways to circumvent a table filter:
by issuing a custom SQL query String through the getDataSetByQuery method of the databaseManager API. (Note: the version of
getDataSetByQuery that takes a QueryBuilder object as first parameter DOES take into account applicable TableFilters

by using the rawSQL plugin

Therefore, if one wishes to maintain the effects of a filter, it is important to remember to modify queries with an appropriate SQL WHERE clause
in case any of the above two cases apply

Operators and modifiers may be combined, producing more complex conditions. For example #^||!= would translate to: is null
OR case-insensitive not equals

When using the IN operator, one should provide an array of values or a String, which may be used as a sub select for the SQL IN clause.

https://wiki.servoy.com/display/DOCS/Database+Manager#DatabaseManager-addTableFilterParam
https://wiki.servoy.com/display/DOCS/rawSQL

2 of 2

// Filter products within an array of product codes
var success = databaseManager.addTableFilterParam('crm', 'products', 'productcode', 'in', [120, 144, 200]);

// Filter orders using a subselect
var success = databaseManager.addTableFilterParam('crm', 'orders', 'countrycode', 'sql:in', 'select country code
from countries where region = "Europe"')

Example This example shows filters on null values

// Filter products within product code is null
var success = databaseManager.addTableFilterParam('crm', 'products', 'productcode', '=', null);

// Filter products within product code is not null
var success = databaseManager.addTableFilterParam('crm', 'products', 'productcode', '!=', null);

// Filter products within product code is null or 120
var success = databaseManager.addTableFilterParam('crm', 'products', 'productcode', '^||='', 120);

Example This example shows how to filter an entire server connection by passing <null> for the table name. This is ideal for multi-tenant architectures as an
entire server connection can be filtered by a single expression, i.e. the current company

// all tables that have the companyid column should be filtered
var success = databaseManager.addTableFilterParam('crm', null, 'companyidid', '=', globals.currentCompanyID)

In Servoy 2020.03 we added support for sql-modifier . When value of the filter is a custom query, the operator used should be prefixed with "sql:"
(like sql:in , sql:=, ...). This is a security feature, so a developer should explicitly mark a value as a select query. Currently, the operator works
without the sql-modifier (the old way), but it will generate a warning in the log: "Filter is created using a custom query without using the sql-
modifier, this will be removed in a future version of servoy, please use operator 'sql:in'". See issue

 as we plan to enforce the modifier in future

releases.

 - Jira project doesn't exist or you don't have permission to view SVY-14682

it.

https://support.servoy.com/browse/SVY-14682?src=confmacro

	Using Table Filters

