
1 of 5

NGClientWebClientSmartClient

GetRequest
 Apr 11, 2024 06:28

Supported Clients

Methods Summary
Boolean addHeader(headerName, value) Add a header to the request.
void executeAsyncRequest(username, password, 

workstation, domain, 
successCallbackMethod, 
errorCallbackMethod)

Execute the request method asynchronous.

void executeAsyncRequest(username, password, 
workstation, domain, 
successCallbackMethod, 
errorCallbackMethod, callbackExtraArgs)

Execute the request method asynchronous using windows authentication.

void executeAsyncRequest(username, password, 
successCallbackMethod, 
errorCallbackMethod)

Execute the request method asynchronous.

void executeAsyncRequest(username, password, 
successCallbackMethod, 
errorCallbackMethod, callbackExtraArgs)

Execute the request method asynchronous using windows authentication.

void executeAsyncRequest
(successCallbackMethod, 
errorCallbackMethod)

Execute the request method asynchronous.

void executeAsyncRequest
(successCallbackMethod, 
errorCallbackMethod, callbackExtraArgs)

Execute the request method asynchronous using windows authentication.

Response executeRequest() Execute the request method.
Response executeRequest(userName, password) Execute the request method.
Response executeRequest(userName, password, 

workstation, domain)
Execute a request method using windows authentication.

void usePreemptiveAuthentication(b) Whatever to use preemptive authentication (sending the credentials in the header, 
avoiding the server request to the client - useful when uploading files, as some http 
servers would cancel the first request from the client, if too big, as the authentication 
request to the client was not yet sent)

Methods Details

addHeader(headerName, value)
Add a header to the request.

Parameters

String headerName ;
String value ;

Returns

Boolean
Supported Clients

SmartClient,WebClient,NGClient
Sample

method.addHeader('Content-type','text/xml; charset=ISO-8859-1')

executeAsyncRequest(username, password, workstation, domain, successCallbackMethod, errorCallbackMethod)
Execute the request method asynchronous. Success callback method will be called when response is received.
Response is sent as parameter in callback.
This Response can be a response with a different status code then just 200, it could also be 500, which is 
still a valid response from the server, this won't go into the error callback.
So you need to test the Reponse.getStatusCode() for that to know if everything did go OK.
If no response is received (request errors out), the errorCallbackMethod is called with exception message as 
parameter.

https://wiki.servoy.com/display/DOCS/Boolean
https://wiki.servoy.com/display/DOCS/Response
https://wiki.servoy.com/display/DOCS/Response
https://wiki.servoy.com/display/DOCS/Response
https://wiki.servoy.com/display/DOCS/String
https://wiki.servoy.com/display/DOCS/String
https://wiki.servoy.com/display/DOCS/Boolean


2 of 5

Parameters

String username the user name
String password the password
String workstation The workstation the authentication request is originating from.
String domain The domain to authenticate within.
Function successCallbackMethod callbackMethod to be called after response is received
Function errorCallbackMethod callbackMethod to be called if request errors out

Supported Clients

SmartClient,WebClient,NGClient
Sample

method.executeAsyncRequest('username','password','mycomputername','domain',globals.successCallback,globals.
errorCallback)

executeAsyncRequest(username, password, workstation, domain, successCallbackMethod, errorCallbackMethod, 
callbackExtraArgs)

Execute the request method asynchronous using windows authentication.
Success callback method will be called when response is received. Response is sent as parameter in callback 
followed by any 'callbackExtraArgs' that were given.
This Response can be a response with a different status code then just 200, it could also be 500, which is 
still a valid response from the server, this won't go into the error callback.
So you need to test the Reponse.getStatusCode() for that to know if everything did go OK.
If no response is received (request errors out, network errors), the errorCallbackMethod is called with 
exception message as parameter followed by any 'callbackExtraArgs' that were given.

Parameters

Stri
ng

username the user name

Stri
ng

password the password

Stri
ng

workstation The workstation the authentication request is originating from.

Stri
ng

domain The domain to authenticate within.

Fun
ction

successCal
lbackMethod

callbackMethod to be called after response is received

Fun
ction

errorCallba
ckMethod

callbackMethod to be called if request errors out

Arr
ay

callbackExt
raArgs

extra arguments that will be passed to the callback methods; can be used to identify from which request the response arrived when 
using the same callback method for multiple requests. Please use only simple JSON arguments (primitive types or array/objects of 
primitive types)

Supported Clients

SmartClient,WebClient,NGClient
Sample

method.executeAsyncRequest('username','password','mycomputername','domain',globals.successCallback,globals.
errorCallback, [callIDInt])

executeAsyncRequest(username, password, successCallbackMethod, errorCallbackMethod)
Execute the request method asynchronous. Success callback method will be called when response is received.
Response is sent as parameter in callback.
This Response can be a response with a different status code then just 200, it could also be 500, which is 
still a valid response from the server, this won't go into the error callback.
So you need to test the Reponse.getStatusCode() for that to know if everything did go OK.
If no response is received (request errors out), the errorCallbackMethod is called with exception message as 
parameter.

Parameters

String username the user name
String password the password
Function successCallbackMethod callbackMethod to be called after response is received
Function errorCallbackMethod callbackMethod to be called if request errors out

Supported Clients

SmartClient,WebClient,NGClient

https://wiki.servoy.com/display/DOCS/String
https://wiki.servoy.com/display/DOCS/String
https://wiki.servoy.com/display/DOCS/String
https://wiki.servoy.com/display/DOCS/String
https://wiki.servoy.com/display/DOCS/Function
https://wiki.servoy.com/display/DOCS/Function
https://wiki.servoy.com/display/DOCS/String
https://wiki.servoy.com/display/DOCS/String
https://wiki.servoy.com/display/DOCS/String
https://wiki.servoy.com/display/DOCS/String
https://wiki.servoy.com/display/DOCS/String
https://wiki.servoy.com/display/DOCS/String
https://wiki.servoy.com/display/DOCS/String
https://wiki.servoy.com/display/DOCS/String
https://wiki.servoy.com/display/DOCS/Function
https://wiki.servoy.com/display/DOCS/Function
https://wiki.servoy.com/display/DOCS/Function
https://wiki.servoy.com/display/DOCS/Function
https://wiki.servoy.com/display/DOCS/Array
https://wiki.servoy.com/display/DOCS/Array
https://wiki.servoy.com/display/DOCS/String
https://wiki.servoy.com/display/DOCS/String
https://wiki.servoy.com/display/DOCS/Function
https://wiki.servoy.com/display/DOCS/Function


3 of 5

Sample

method.executeAsyncRequest(globals.successCallback,globals.errorCallback)

executeAsyncRequest(username, password, successCallbackMethod, errorCallbackMethod, callbackExtraArgs)
Execute the request method asynchronous using windows authentication.
Success callback method will be called when response is received. Response is sent as parameter in callback 
followed by any 'callbackExtraArgs' that were given.
This Response can be a response with a different status code then just 200, it could also be 500, which is 
still a valid response from the server, this won't go into the error callback.
So you need to test the Reponse.getStatusCode() for that to know if everything did go OK.
If no response is received (request errors out, network errors), the errorCallbackMethod is called with 
exception message as parameter followed by any 'callbackExtraArgs' that were given.

Parameters

Stri
ng

username the user name

Stri
ng

password the password

Fun
ction

successCal
lbackMethod

callbackMethod to be called after response is received

Fun
ction

errorCallba
ckMethod

callbackMethod to be called if request errors out

Arr
ay

callbackExt
raArgs

extra arguments that will be passed to the callback methods; can be used to identify from which request the response arrived when 
using the same callback method for multiple requests. Please use only simple JSON arguments (primitive types or array/objects of 
primitive types)

Supported Clients

SmartClient,WebClient,NGClient
Sample

method.executeAsyncRequest(globals.successCallback,globals.errorCallback, [callIDInt])

executeAsyncRequest(successCallbackMethod, errorCallbackMethod)
Execute the request method asynchronous. Success callback method will be called when response is received.
Response is sent as parameter in callback.
This Response can be a response with a different status code then just 200, it could also be 500, which is 
still a valid response from the server, this won't go into the error callback.
So you need to test the Reponse.getStatusCode() for that to know if everything did go OK.
If no response is received (request errors out), the errorCallbackMethod is called with exception message as 
parameter.

Parameters

Function successCallbackMethod callbackMethod to be called after response is received
Function errorCallbackMethod callbackMethod to be called if request errors out

Supported Clients

SmartClient,WebClient,NGClient
Sample

method.executeAsyncRequest(globals.successCallback,globals.errorCallback)

executeAsyncRequest(successCallbackMethod, errorCallbackMethod, callbackExtraArgs)
Execute the request method asynchronous using windows authentication.
Success callback method will be called when response is received. Response is sent as parameter in callback 
followed by any 'callbackExtraArgs' that were given.
This Response can be a response with a different status code then just 200, it could also be 500, which is 
still a valid response from the server, this won't go into the error callback.
So you need to test the Reponse.getStatusCode() for that to know if everything did go OK.
If no response is received (request errors out, network errors), the errorCallbackMethod is called with 
exception message as parameter followed by any 'callbackExtraArgs' that were given.

Parameters

Fun
ction

successCal
lbackMethod

callbackMethod to be called after response is received

Fun
ction

errorCallba
ckMethod

callbackMethod to be called if request errors out

Arr
ay

callbackExt
raArgs

extra arguments that will be passed to the callback methods; can be used to identify from which request the response arrived when 
using the same callback method for multiple requests. Please use only simple JSON arguments (primitive types or array/objects of 
primitive types)

https://wiki.servoy.com/display/DOCS/String
https://wiki.servoy.com/display/DOCS/String
https://wiki.servoy.com/display/DOCS/String
https://wiki.servoy.com/display/DOCS/String
https://wiki.servoy.com/display/DOCS/Function
https://wiki.servoy.com/display/DOCS/Function
https://wiki.servoy.com/display/DOCS/Function
https://wiki.servoy.com/display/DOCS/Function
https://wiki.servoy.com/display/DOCS/Array
https://wiki.servoy.com/display/DOCS/Array
https://wiki.servoy.com/display/DOCS/Function
https://wiki.servoy.com/display/DOCS/Function
https://wiki.servoy.com/display/DOCS/Function
https://wiki.servoy.com/display/DOCS/Function
https://wiki.servoy.com/display/DOCS/Function
https://wiki.servoy.com/display/DOCS/Function
https://wiki.servoy.com/display/DOCS/Array
https://wiki.servoy.com/display/DOCS/Array


4 of 5

Supported Clients

SmartClient,WebClient,NGClient
Sample

method.executeAsyncRequest(globals.successCallback,globals.errorCallback, [callIDInt])

executeRequest()
Execute the request method.

Returns

Response
Supported Clients

SmartClient,WebClient,NGClient
Sample

var response = method.executeRequest()

To be able to reuse the client, the response must be
closed if the content is not read via getResponseBody
 or getMediaData:

response.close()

executeRequest(userName, password)
Execute the request method.

Parameters

String userName the user name
String password the password

Returns

Response
Supported Clients

SmartClient,WebClient,NGClient
Sample

var response = method.executeRequest()

To be able to reuse the client, the response must be
closed if the content is not read via getResponseBody
 or getMediaData:

response.close()

executeRequest(userName, password, workstation, domain)
Execute a request method using windows authentication.

Parameters

String userName the user name
String password the password
String workstation The workstation the authentication request is originating from.
String domain The domain to authenticate within.

Returns

Response
Supported Clients

SmartClient,WebClient,NGClient
Sample

var response = method.executeRequest('username','password','mycomputername','domain');

usePreemptiveAuthentication(b)

https://wiki.servoy.com/display/DOCS/Response
https://wiki.servoy.com/display/DOCS/String
https://wiki.servoy.com/display/DOCS/String
https://wiki.servoy.com/display/DOCS/Response
https://wiki.servoy.com/display/DOCS/String
https://wiki.servoy.com/display/DOCS/String
https://wiki.servoy.com/display/DOCS/String
https://wiki.servoy.com/display/DOCS/String
https://wiki.servoy.com/display/DOCS/Response


5 of 5

Whatever to use preemptive authentication (sending the credentials in the header, avoiding the server request to
the client - useful when uploading files, as some http servers would cancel the first request from the client, 
if too big,
as the authentication request to the client was not yet sent)

Parameters

Boolean b ;

Supported Clients

SmartClient,WebClient,NGClient
Sample

https://wiki.servoy.com/display/DOCS/Boolean

	GetRequest

