
Modular development
In This Chapter

Introduction
Solution types
Solutions and modules
Form inheritance
Best practices

Basic core
Project core

Introduction

With Servoy you can develop your application by using a modular design. This means that you can separate objects from eachother by storing them into
different solutions and attaching them to one another. Basically, the idea and advantage of this concept is that it allows you to reuse resources instead of
having to define and maintain them more than once. Servoy allows you to reuse:

Forms
Variables
Methods
Relations
Value lists
Media

Solution types

Servoy distinguishes several solutions types of which and are the most important terms. However, not all of them allow sharing of solution module
resources and are meant to be executed standalone.

Type Meaning Allows resource
sharing

Normal Can be used and started as a regular solution or attached to another solution and/or module as a module. Yes

Module Can only be used as an attached module to a solution and/or module. Yes

Web client only Can be used as a regular solution, but can only be deployed into the Web Client or attached to another solution and
/or module.

Yes

Smart client only Can be used as a regular solution, but can only be deployed into the Smart Client or attached to another solution
and/or module.

Yes

Login Can only be as an attached module specifically for the login UI. Yes

Authenticator Can only be used as a standalone module which executes security logic server-side. No

Pre-import hook
module

Can only be used for automatically executing business logic before the top solution is imported into the Application
Server.

Yes

Post-import hook
module

Can only be used for automatically executing business logic after the top solution is imported into the Application
Server.

Yes

You can define the solution type by selecting one at property at the property sheet of the active solution.solutionType

Solutions and modules

To attach modules to a solution, you can select all applicable modules at property at the property sheet of the active solution. By doing so moduleNames
you can now expand the node of the active solution in the Solution Explorer and access all objects of each attached object. You can also maintain Module
objects from modules and copy and move objects between solutions and modules.

Accessing objects from modules from the active solution works in the same was as accessing them from the active solution itself. The only difference is
that in most cases the name of the module is shown behind the name of the objects which can be selected (from a list).

Note

For information about the solution types and , check out the section.login authenticator Enhanced Security

Note

Solution properties will be ignored if the solution is accessed as a module. Only settings at the top solutions are applicable, except for property m
.oduleNames

Form inheritance

Another way of reusing objects is by form inheritance. Servoy allows you to extend forms by other forms. As forms contain UI as well as variables and
methods, all of this can be inherited and thus reused.

Best practices

Servoy allows you to use its modular design in any way that you want. However, there are some best practices which can help you as a guideline to make
better use of it.

Basic core

When you develop multiple projects then there is most likely some functionality you want to use for all your projects which does not depend on any
database connection. Think of logic like e.g. math function, date calculations, procedures for sending notifications and perhaps some general icons. This
kind of logic is very suitable to store in a core module. Whenever a new project is started, this module will be the main building block on which the rest of
your solutions and modules which be based upon.

Project core

Bigger projects are usually developed by using multiple solutions which are executed independently and/or connected by a main solution. It's most likely
that these solutions share certain objects like e.g. relations, calculations and project-specific media. These objects can be stored in a project core module
and can be attached to all the other project solutions.

Note

It is not possible to access objects of a solution or module which are not directly or indirectly attached to the current solution or module.
Therefore, it's also not possible to access objects from a solution which lies higher in hierarchy than the current one, as long as it has not been
attached.

Note

When a module is attached to a solution and that solution has been attached to that same module, then you have created a cycle. This is not
allowed and results in an error in the Developer.

Note

The way how your application has been designed by using modules is not relevant anymore during deployment. At this point the collection of
solutions and modules have become one flat solution.

Note

For more information about inheritance, check out the section.Inheritance

	Modular development

