1of 8

RESTful Web Services

The RESTful Web Service plugin allows exposing business logic as a RESTful Web Service.

In This Chapter

® About RESTful Web Services
® |Implementing a RESTful Web Service in Servoy
® Keeping It Stateless
Supporting GET Requests
Supporting POST Requests
Supporting DELETE Requests
Supporting PUT Requests
Additional arguments - when adding Extra Data to the Request URL or return values in ws_authenticate
Supported Content Types & Encoding
Returning Binary Data
Setting Custom Headers
® Returning Custom Status Codes
® Authentication/Authorization
® Global Restrictions Based on Servoy Security
® Custom Endpoint Restrictions
JSONP support
Versioning support
Nested call support
Pool of Clients
Client plugin
Sample Solution
More information on RESTful Web Services
API Docs
® rest_ws_plugin_authorized_groups
® rest_ws_plugin_client_pool_exhausted_action
® rest_ws_plugin_client_pool_size

About RESTful Web Services

RESTful Web Services utilize the features of the HTTP Protocol to provide the API of the Web Service. For example, it uses the HTTP Request Types to
indicate the type of operation:

Operation HTTP Request Type

Retrieving of existing records = GET

Creating new records POST
Removing records DELETE
Updating existing records PUT

Using these 4 HTTP Request Types a RESTful API mimics the CRUD operations (Create, Read, Update & Delete) common in transactional systems.

A defining feature of REST is that it is stateless: each call the to a RESTful Web Service is completely stand-alone: it has no knowledge of previous requests.

Implementing a RESTful Web Service in Servoy

A RESTful Web Service endpoint is created by defining a Form in a Solution and implementing one or more of the following methods to the Form:

HTTP Request Type Method name Description

GET ws_read To retrieve data
POST ws_create To create new data
DELETE ws_delete To remove data
PUT ws_update To update data

The RESTful Web Service endpoint is then available through the URL { server Ur| }/ servoy-servi ce/ rest _ws/ {sol uti onNane}/ {f or nNane}.
Multiple endpoints can be created by implementing the relevant ws_* methods on multiple forms.

With 2019.09 the {formName} can also be a scope so you don't need to create a form (thats more a ui element)

If the method for one of the HTTP Request Types is not implemented, that operation is not available on the endpoint and when attempted to be called a
METHOD_NOT_ALLOWED (HTTP 405) error will be thrown.

20f 8

The RESTful Web Service plugin does not have any client side functions or properties: all its magic happens by implementing the methods with the
predefined ws_* names on a form.

1 Service Solution

Servoy solution that has the web service implementation should be a Service type solution, this solution type should only be used for web service
provider and batch processor.

Keeping It Stateless

RESTful Web Services are to be stateless. The RESTful Web Service plugin internally uses a pool of Headless Clients to handle multiple concurrent
requests to the REStful Web Service API. As subsequent requests to the RESTful Web Service API might be handled by different headless clients in the
pool of clients configured for the plugin, no state should be preserved in the headless client at the end of the call to the API. Therefore, make sure any state
is cleared at the end of logic. This means at least the following:

Do not use global or form variables (or set them to default values at the end of the logic)
Do not use the solution model API
Do not alter the state of the form's Ul

L]
L]
L]
® Do save or rollback any unsaved changes before the end of the method

Supporting GET Requests

GET Requests are supported on the endpoint if the ws_r ead() : Obj ect method is implemented. The method can return either a JavaScript primitive/array
/object or a byte array, from 2020.12 on you can return a JSFile object so you can stream large files to the client.

If the return value is a JavaScript object, it will be serialized and then placed in the body of the HTTP Response. See Returning Binary Data for more info on
returning binary content.

If the return value of the method is null, a NOT_FOUND response (HTTP 404) will be generated.

See what arguments you can receive in this method call.

Supporting POST Requests

POST Requests are supported on the endpoint if the ws_cr eat e(cont ent) : Obj ect method is implemented. POST Requests require that data is
supplied in the body of the request.

The body content of the HTTP Request is passed into the ws_cr eat e() method as first argument. If the body Content-Type is not application/binary, it will
be automatically converted to a JavaScript object / string.

If the body content cannot be converted to a JavaScript object / string based on the Content-Type, an INTERNAL_SERVER_ERROR response (HTTP 500)
will be generated. If the content in the body of the HTTP Request is missing, a NO_CONTENT response will be generated (HTTP 204).

The ws_cr eat e() method supports consumption of multipart post requests. If the POST Request is a multipart POST, the cont ent parameter will receive
an Array of Objects, with each entry in the Array corresponding to one part of the multipart post, as per the example below:

Multipart post message

—————— WebKi t For mBoundar yX6nBO7q27y QLJNbb
Cont ent - Di sposition: formdata; nanme="nyFileDescription"

M sanple file content.

------ WebKi t For nBoundar yX6nBO7q27y QLJNbb
Content-Di sposition: formdata; name="nyFile";
fil ename="SomeRandonFi | e. bi n"

Cont ent - Type: application/octet-stream

..... Bl NARY CONTENT.
------ WebKi t For nBoundar yX6nBO7q27y QLJNbb- -

http://en.wikipedia.org/wiki/Representational_state_transfer#Stateless

30f 8

content parameter value

{
name: "nyFi | eDescri ption",
/1 bytes content is "My sanple file."
val ue: string, // before 2020.12
cont ent Type: "text/ pl ai n"
b
{
nane: "nyFile",
val ue: bytes[], // before 2020.12
fil eNane: " SomeRandonFi | e. bi n",
cont ent Type: "appl i cati on/ oct et - st reant
}

content parameter value

[
/1 JSUpl oad in 2020.12 on previously it was a byte[] that behavior can be set back to byte[] by the property

on the adm n page for this plugin.
/] te extra data is in the JSUpl oad. get Fi el ds() and JSUpl oad. get Fi el dVal ue("nyFi | eDescription") == "M/ sanple
file."
{

name: "nyFile",
val ue: JSUpl oad,
fil eNanme: " SoneRandonti | e. bi n",
cont ent Type: "appl i cati on/ oct et - st r eant'

The method can optionally return a JavaScript primitive/array/object or a byte array, from 2020.12 on you can return a JSFile object so you can stream large
files to the client.

If the return value is a JavaScript object, it will be serialized and then placed in the body of the HTTP Response. See Returning Binary Data for more info on
returning binary content.

See what other arguments you can receive in this method call.

Supporting DELETE Requests

DELETE Requests are supported on the endpoint if the ws_del et e() : Bool ean method is implemented. The method has to return a Boolean value:

® true: to indicate successful deletion. This result will generate an OK response (HTTP 200)
® false: to indicate delete failure. This response will generate a NOT_FOUND response (HTTP 404)

See what arguments you can receive in this method call.

Supporting PUT Requests

PUT Requests are supported on the endpoint if the ws_updat e(cont ent) : Bool ean method is implemented. Data has to be supplied in the body of the
HTTP request and the method has to return a Boolean value:

® true: to indicate successful update. This result will generate an OK response (HTTP 200)
® false: to indicate update failure. This response will generate a NOT_FOUND response (HTTP 404)

The body content of the HTTP Request is passed into the ws_updat e() method as first argument. If the body Content-Type is not application/binary, it will
be automatically converted to a JavaScript object / string. The argument is the same as described above for POST.

If the body content cannot be converted to a JavaScript object / string based on the Content-Type an INTERNAL_SERVER_ERROR response (HTTP 500)
will be generated. If the content in the body of the HTTP Request is missing, a NO_CONTENT response will be generated (HTTP 204).

See what other arguments you can receive in this method call.

Additional arguments - when adding Extra Data to the Request URL or return values in
ws_authenticate

4 0of 8

Additional data can be added in the URL of the HTTP Requests. There are two variations and how they are made available in the ws_* methods differs.

Additional URL Fragments
The base URL for each operation is { server Ur |l }/ servoy-servi ce/ rest _ws/ {sol uti onNanme}/{for mNane}.

Additional URL fragments can be added to the URL like:

{serverUrl}/servoy-service/rest_ws/{sol uti onNarme}/ {formNanme}/ { soneVal ue}/ { anot her Val ue}

The additional URL fragments { sonmeVal ue} and { anot her Val ue} will be passed into the ws_* method as additional arguments. This means that for ws_
read() and ws_del et e() they will be the first and second argument and for ws_cr eat e() and ws_updat e() they will be the 2nd and 3rd argument, as
these methods already have by default the content of the request as first argument.

Query Parameters

The request URLs can also be extended with Query parameters like: { server Ur| }/ servoy- servi ce/ rest _ws/ {sol uti onNanme}/ {f or mNane} ?

{ sonmeKey} ={ soneVal ue} & anot her Key} ={ anot her Val ue} &&{ anot her Key} ={ anot her Val ue2}

If the URL contains Query parameters, these will be passed into the ws_* method as an additional last argument. This last argument is a JavaScript object
containing all keys as properties with the values associated with the key in an Array: Object<Array<String>>

Note that if custom endpoint restrictions are implemented and the ws_aut hent i cat e() method returns any value but null or false, the RESTful Web
Services plugin adds a query parameter with the key ws_aut hent i cat e and as value the returned value of the ws_aut hent i cat e() method.

Combining Additional URL Fragments and Query Parameters
Additional URL path elements and Query parameters can be combined in the URL (the query parameters should come after the additional URL fragments to
make it a valid URL):

{serverUrl}/servoy-service/rest_ws/{sol uti onNarme}/ {formNanme}/ { soneVal ue}/ { anot her Val ue} ?{ soneKey} ={ soneVal ue} &
{ sonmeKey} ={ anot her Val ue} &&{ anot her Key} ={ anot her Val ue2}

Example

A HTTP Get Request on URL { server Url}/servoy-service/rest_ws/ nmyRest APl Sol uti on/ APl v1/f oo/ bar ?
nanme=John&age=30&pet =Cat &pet =Dog would result in invoking the ws_r ead method on form API v1 of solution myRest API Sol uti on.

The ws_r ead function will be invoked with three parameters: ' f oo’ ,* bar',{name: ['John'] , age: [30] , pet: ['Cat', 'Dog'] }

function ws_read()

{
for (var i = 0; argunents.length, i++) {
if (typeof arguments[i] == "String') { //The URL path additions are passed in as Strings
application.output('URL Path addition: ' + argunments[i])
} else {
for each (var key in argunents[i]) {
application.output('Query Paraneter "' + key + '", values: "' + argunents[i][key].join(', ') +
)
}
}
}
}
/] out put s:

//URL Path addition: foo

//URL Path addition: bar

/] Query Paraneter "nanme", values: "John"

/'l Query Paraneter "age", values: "30"

/] Query Paraneter "pet", values: "Cat, Dog"

Supported Content Types & Encoding

The plugin supports the following Content Types:
® JSON - application/json
® XML - application/xml
® binary - application/binary

Request Content-Type and Encoding

The Content-Type of the HTTP Request can be explicitly set by the caller using the Cont ent - Type header in the HTTP Request. Optionally, the charset
can be included in the Content-Type header to specify the encoding used. If the charset is not specified, ut f - 8 will be assumed.

50f 8

Content-Type Header

Cont ent - Type: application/json; charset=utf-8

For requests that specify body content (POST and PUT Requests (resp. ws_cr eat e() and ws_updat e() methods), if no valid Content-Type is set, the
plugin will try to establish the type of the content based on the first character of the content:

® {": Content-Type application/json will be assumed
® <! Content-Type application/xml will be assumed

When the Content-Type cannot be determined, an UNSUPPORTED_MEDIA_TYPE response will be generated (HTTP 415).

Response Content-Type and Encoding

By default, the plugin will respond with the same content type as used in the HTTP Request. The client calling the RESTful Web Service can request a
different response content type by specifying the desired content type for the Response by setting the Accept header of the HTTP Request, for example: Ac
cept: application/jsonorAccept: application/binary

The response will be encoded with the ut f - 8 charset by default, if the response is not returning binary data.

If the encoding of the response needs to be different than the request encoding, this can be specified in the HTTP Request by setting the charset value in
the Accept header:

Accept Header

Accept: application/json; charset=UTF-16

Returning Binary Data

The RESTful Web Services plugin supports returning binary data in GET operations. Binary data could for example be the content of a dataprovider of type
MEDIA or the contents of a file read from disk. In this case, the body of the response will contain the actual stream of bytes.

Clients consuming the web service must be able to handle the binary response. When the consuming client specifies the Accept header, it must accept app
I'i cati on/ bi nary, otherwise an UNSUPPORTED_MEDIA_TYPE (HTTP 415) response will be generated. If the consuming client did not specify the
Content Type of the request, the binary result is returned unconditionally.

From 2020.12 on if you return large binary data, please use a JSFile wrapper around an actual file on disk, then the bytes are just streamed directly from
disk to the client over the http request without the need to read the bytes fully in memory.

Setting Custom Headers

Custom headers can be set in the response by implementing the ws_r esponse_header s() method. This method can return:

® astring or an array of strings of type " header Name=header Val ue" . For example "Ser ver =Ser voy(Uni x) ".
® (starting with Servoy 8.2.2) an object or an array of objects containing headerName/headerValue pairs. For example { nane : " Content -
Di sposition", value : '"attachment; filename="test.txt""' }

Each key/value pair will be added as Header to the HTTP Response.

Returning Custom Status Codes

While some of the HTTP Response status codes are hardcoded in the RESTful Webservices plugin, it is possible to control the HTTP Status codes from
within the ws_* methods. Returning a custom HTTP Status Code can be done by throwing the specific value (a number) for the HTTP Status Code.

For example, when a ws_updat e call comes in for a non-existing resource, the HTTP Status Code to return would be a ‘Not Found' status code, which is a
HTTP 404. Returning the 404/Not Found HTTP Status code from within a ws_* method could be done the following way:

function ws_update() {
/lyour |ogic here
t hr ow 404;

It is also possible to set the body content of the HTTP Response with a more elaborate message to give more context to the returned status code:

60f 8

function ws_update(){
/lyour 1ogic here
var code = plugins. http. HTTP_STATUS. SC_UNAUTHORI ZED
var nmessage = "<?xml version=\"1.0\" encodi ng=\"UTF- 8\ " ?><error ><r eason>access deni ed<
/| reason><nmessage>access token i s expired</ message></error>"
throw [code, nessage];

}

For convenience purposes, all available HTTP Status Codes are also listed under the HTTP Plugin, so instead of throwing the number 404 in the first
example, a more readable way would be to throw plugins.http.HTTP_STATUS.SC_NOT_FOUND

For additional explanation of all the status codes, see List_of HTTP_status_codes on Wikipedia.

Authentication/Authorization

By default access to any endpoint in unrestricted. The plugin supports 2 modes of implementing Authentication and authorization.

1. Restricting access to all endpoints based on HTTP Basic Authentication, validated against Servoy's built-in security
2. Restricting access per endpoint based on HTTP Basic Authentication with custom validation

Global Restrictions Based on Servoy Security

By setting the plugins server property r est _ws_pl ugi n_aut hori zed_gr oups to a comma separated list of groups defined in the built-in security system
of Servoy, access to all endpoints is automatically restricted to users that are part of the groups in the list.

The endpoints must be called with HTTP Basic authentication to provide a username and password. The username/password supplied in the HTTP Request
is validated against the users registered in Servoy's built-in security system and additionally against group membership. Access is denied if the user does
not exist or the supplied password is incorrect, or the user doesn't belong to one of the specified groups.

When access is denied, an UNAUTHORIZED response is generated (HTTP 401).

Custom Endpoint Restrictions

For each endpoint custom authentication and authorization can be added by implementing the ws_aut hent i cat e(user Nane, password): Obj ect
method. If present, it will be called before performing any rest operation (ws_read, ws_create, ws_delete, ws_update) and the calls to the endpoint must be
made with HTTP Basic Authentication to supply a username and password.

If the method returns false or null an UNAUTHORIZED response is generated (HTTP 401).

Any other return value will be added as an extra query parameter with the key ws_aut hent i cat e to the incoming request.

JSONP support

The plugin supports so-called JSONP: a variation of JSON that allows cross domain data retrieval. The JSONP variation can be invoked by added a
‘callback’ parameter to the HTTP Request URL:

{serverUrl}/servoy-servicel/rest_ws/{sol uti onNane}/ {for mNane} ?cal | back={ cal | backFuncti onNane}

When invoked with the value "myCallback" for the 'callback’ parameter, the returned JSON value will be wrapped in a function call to the myCal | back
function:

nyCal | back({ "hello" : "Hi, |'mJSON. Vo are you?"})

Versioning support

{serverUrl}/servoy-service/rest_ws/v2/ nysol uti on/ nyformor_scope/
or

{serverUrl}/servoy-service/rest_ws/nysol uti on/v2/ nyform or_scope/

This is supported (the 'v' has to be there and the '2' must be a number).

What is looked up is in the 'myform_v2' form or the 'scope_v2' scope (for version 2 of the api).

https://wiki.servoy.com/display/DOCS/HTTP_STATUS
https://wiki.servoy.com/display/DOCS/http
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

70f 8

(supported since 2019.09)
Nested call support

{serverUrl}/servoy-service/rest_ws/nysol uti on/ myscope/ mynet hod/ nynmet hod2/ ar gl

The plugin will now lookup in ‘mysolution’ on the 'myscope’ scope a method named ‘ws_read_mymethod_mymethod2'; if that one is found it will call it with
‘argl’ as an argument.

If 'ws_read_mymethod_mymethod2' method is not found it will try: ‘ws_read_mymethod' (that will then get 2 arguments: ‘'mymethod2' and 'argl’) and if that
one is not found either it will fallback to 'ws_read' (with 3 arguments).

Read more about method arguments.

Pool of Clients

To service the requests to the RESTful Web service API, the plugin creates a pool of (headless) clients. The maximum number of clients allowed can be set
using the rest _ws_pl ugi n_cl i ent _pool _si ze property of the plugin (default value = 5). If you have multiply rest solutions a the property:
"rest_ws_plugin_client_pool_size_per_solution" can be used to set the pool size per solution (Servoy 8.3.2). This latter property will set the "r est _ws_pl ug
in_client_pool _size"to-1. Because the max number will then be number of rest solutions multiplied by the "per solution".

When there are more concurrent requests than the number of clients in the pool, by default the requests will wait until a client becomes available in the pool.
This behavior can be altered by setting the r est _ws_pl ugi n_cl i ent _pool _exhaust ed_act i on property of the plugin. The following values are
supported for this property:

® block (default): requests will wait until a client becomes available

¢ fail: the request will fail. The API will generate a SERVICE_UNAVAILABLE response (HTTP 503)

® grow: allows the pool to grow, by starting additional clients. This will set the 2 pool size properties to -1 (so voiding both of them). And if the "rest_ws
_plugin_client_pool_size_per_solution” is set then that will be used as the number of idle clients to keep per solution.

1 Servoy Cluster

The RESTful Web service plugin uses a pool of headless clients to service the requests. When operated within a Servoy Cluster, note that
poolsize is set per Servoy Application Server.

Client plugin
Code running inside a rest-ws request can access the request and the response using the rest_ws client plugin.

For example, retrieve a custom header sent by the client:

var request = plugins.rest_ws.get Request();
var nyheader = request.get Header (' My- Speci al - Header') ;

Note that the client-plugin can only be used within a request handler, the function pl ugi ns. rest _ws. i sRunni ngRequest () can be used to check
whether the code is running as a request hander.

See API documentation for the plugin.

Sample Solution

A sample solution is included in the Servoy distribution (servoy_sample_rest_ws.servoy), detailing how to retrieve data from the HTTP Request and to return
a response.

More information on RESTful Web Services

See the following links for more information on RESTful Web Services:

https://wiki.servoy.com/display/DOCS/rest_ws

8of 8

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://www.infoq.com/articles/rest-introduction
http://www.ibm.com/developerworks/webservices/library/ws-restful/
http://home.ccil.org/~cowan/restws.pdf

API| Docs

Server Property Details

rest_ws_plugin_authorized_groups
rest_ws_plugin_client_pool_exhausted_action

rest_ws_plugin_client_pool_size

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://www.infoq.com/articles/rest-introduction
http://www.ibm.com/developerworks/webservices/library/ws-restful/
http://home.ccil.org/~cowan/restws.pdf

	RESTful Web Services

