
1 of 5

Find Mode

In This Chapter

Search Criteria with Logical AND
Multiple Find Records for Logical OR
Finding Records Through a Relation
Finding Records within a Related Foundset
Special Operators
Using find mode from scripting without using special operators or spaces
Find Mode and the User Interface

Read-Only Fields
Canceling Find Mode
Complex Searches

Find Mode is a special mode that can be assumed by a foundset object to perform data searches using a powerful, high-level abstraction. When in Find
Mode, the foundset's , normally used to read/write data, are instead used to enter search criteria. Any data provider can be assigned a search Data Providers
condition which should evaluate to a String, Number or Date. Because forms typically bind to a foundset, criteria may be entered from the GUI by the user or
programmatically.

A foundset enters Find Mode when its method is invoked. This method returns a Boolean, because under certain circumstances, the foundset may fail to find
enter find mode. Therefore, it is good practice to enclose a find in an an statement, so as not to accidentally modify the selected record. A foundset exits if
Find Mode when its method is executed, upon which the foundset's SQL query is modified to reflect the expressed criteria and the matching records search
are loaded. The method returns an integer, which is the number of records loaded by the find. However this doesn't necessarily represent the total search
number of matching records as foundset records are loaded in blocks.

Example:

// Find all customers in the city of Berlin
if(foundset.find()){ // Enter find mode
 city = 'Berlin'; // Assign a search criteria
 foundset.search(); // Execute the query and load the records
}

Results in the foundset's SQL query:

 SELECT customerid FROM customers WHERE city = ? ORDER BY customerid ASC //Query params: ['Berlin']

Search Criteria with Logical AND

When multiple search criteria are entered for multiple data providers, the criteria will be concatenated with a SQL operator.AND

Example:

// Find all customers in the city of Berlin AND in the postal code 12209
if(foundset.find()){ // Enter find mode city = 'Berlin'; // Assign city search criterion
 city = 'Berlin'; // Assign a search criteria
 postalcode = '12209' // Assign postal code criterion
 foundset.search(); // Execute the query and load the records
}

Results in the foundset's SQL query:

 SELECT customerid FROM customers WHERE city = ? AND postalcode = ? ORDER BY customerid ASC //Query params:
['Berlin','12209']

Multiple Find Records for Logical OR

It's important to note that when in Find Mode, a foundset will initially contain one record object. However, multiple record objects may be used to articulate
search criteria. This has the effect that the criteria described in each record are concatenated by a SQL .OR

Example:

2 of 5

// Find customers in the city of Berlin AND in the postal code 12209...
// OR customers in the city of San Francisco AND in the postal code 94117
if(foundset.find()){ // Enter find mode city = 'Berlin';
 city = 'Berlin'; // Assign a search criteria
 postalcode = '12209';
 foundset.newRecord(); // Create a new search record
 city = 'San Francisco'
 postalcode = '94117';
 foundset.search(); // Execute the query and load the records
}

Results in the foundset's SQL query:

 SELECT customerid FROM customers WHERE (city = ? AND postalcode = ?) OR (city = ? AND postalcode = ?) ORDER
BY customerid ASC //Query params: ['Berlin','12209','San Fransisco','94117']

Finding Records Through a Relation

Find Mode is very flexible as searches can traverse the entire data model. When a foundset enters find mode, any foundset related to a search record can
be used to enter criteria. Moreover, related foundsets can use multiple search records so any permutation of Logical AND / OR is possible.

Example:

// Find customers that have 1 or more orders which were shipped to Argentina
if(foundset.find()){ // Enter find mode
 customers_to_orders.shipcountry = 'Argentina'; // enter criteria in a related foundset
 foundset.search(); // Execute the query and load the records
}

Results in the foundset's SQL query:

SELECT DISTINCT customers.customerid FROM customers
LEFT OUTER JOIN orders ON customers.customerid=orders.customerid
WHERE orders.shipcountry = ? ORDER BY customers.customerid ASC

And there are no limitations to the number of traversals across related foundsets.

Example:

// Find customers with one or more orders containing one or more products supplied by a vendor in USA
if(foundset.find()){
 customers_to_orders.orders_to_order_details.order_details_to_products.products_to_suppliers.country = 'USA';
 foundset.search();
}

Finding Records within a Related Foundset

It is worth pointing out that related foundsets may be put into Find Mode as well. The foundset will maintain the constraints imposed by the relation in
addition to the criteria specified in the data providers.

Example: This operation is nearly identical to the previous search on ship country, however it matters which foundset is in Find Mode. The difference is that
this operation searches for order records of a particular customer.

// Find orders of THE SELECTED CUSTOMER that were shipped to Argentina
if(customers_to_orders.find()){
 customers_to_orders.shipcountry = 'Argentina';
 customers_to_orders.search();
}

Results in the foundset's SQL query (notice the relation constraint is preserved):

SELECT orderid FROM orders WHERE customerid = ? AND shipcountry = ? ORDER BY orderid ASC

3 of 5

Special Operators

Servoy's Find Mode provides several special operators that when used in combination can articulate the most sophisticated search requirements. Operators
and operands should be concatenated as strings.

Operator Description Applicable
Data Types

Example

|| OR: Used to implement a logical OR for two or more search conditions in
the same data provider

Any
 // Cities of London or Berlin
city = 'Berlin||London';

| Format: Used to separate a value and an implied format. Date
 // exactly 01/01/2001 (00:00:00
implied)
orderdate = '01/01/2001|MM/dd/yyyy';

! Not: Used to implement a logical NOT for a search condition. Any
// Anything but Berlin
city = '!Berlin';

Sensitivity Modifier: Implies a case-insensitive search for text columns.
Implies a match on entire day for date columns.

Text, Date
// i.e. Los Angeles, lOS aNGeLES
city = '#los angeles';

// any time on 01/01/2001
orderdate = '#01/01/2001|MM/dd/yyyy';

^ Is Null: Matches records where a column is null. Any
// All null contact names, not
including empty strings
contactname = '^';

^= Is Null/Empty/Zero: Matches records where a column is null, empty string
value or zero numeric value

Text, Numeric
// All freights which are null or 0
freight = '^=';

< Less than: Matches records where the column is less than the operand Any
// i.e. 50, 99.99, but not 100, 101
freight = '<100';

<= Less than or equal to: Matches records where the column is less than or
equals the operand

Any
// i.e. Atlanta, Baghdad, Berlin,
but not Buenos Aires, Cairo
city = '<=Berlin';

>= Greater than or equal to: Matches records where the column is greater
than or equals the operand

Any
// Any time on/after 12am new year's
day 2001
orderdate = '>=01/01/2001|MM/dd
/yyyy';

> Greater than: Matches records where the column is greater than the
operand

Any
// i.e. 100.01, 200, but not 99,100
freight = '>100';

4 of 5

... Between: Matches records where the column is between (inclusive) the left
and right operands.

Any
// Any time during the year 2001
orderdate = '01/01/2001...01/01
/2002|MM/dd/yyyy';

// i.e.
freight = '100...200';

// i.e. London, Lyon, Madrid, Omaha,
Portland
city = 'London...Portland';

% Wild Card String: Matches records based on matching characters and wild
cards

Text
city = 'New%'; // Starts with: i.
e. New York, New Orleans
city = '%Villa%; // Contains: i.e.
Villa Nova, La Villa Linda
city = '%s'; // Ends with: i.e.
Athens, Los Angeles

_ Wild Card Character: Matches records based on Text
// i.e. Toledo, Torino
city = '%To___o%';

\ Escape Character: Used to escape other string operators Text
// Escape the wild card, i.e. ...50%
of Capacity...
notes = '%\%%';

now Now: Matches records where the condition is right now, including time Date
// exact match on this second
creationdate = 'now';

today Today: Matches records where the condition is any time today Date
// match on anytime today
orderdate = 'today';

Using find mode from scripting without using special operators or spaces

You can use find mode with non-strings as well. For example, dates, numbers are not interpreted and will be used literally.

Arrays can be used when searching for multiple values, these are also not interpreted.

if(foundset.find()) {
 city = ['Berlin', 'Amsterdam'] // city in (?, ?) {'Berlin', 'Amsterdam'}
 companyid = 42; // literal numerical value
 startdate = new Date(99,5,24,11,33,30,0); // literal date value
 foundset.search(); // Execute the query and load the records
}

Note that when you use a string for searching, it will be trimmed (except in case of a CHAR column, which is padded with spaces by the database).

If you want to make sure the argument is not interpreted, us a single-element array:

if (foundset.find()) {
 // tag = ' Hello Servoy '; // would search for trimmed
 tag = [' Hello Servoy ']; // will search for literal (untrimmed)
 foundset.search(); // select ... from ... where tag = ? {' Hello Servoy '}
}

Find Mode and the User Interface

5 of 5

The above examples deal with find mode in which find mode is entered, criteria are expressed and the search is run, all in a single action. The effect of the
search is entirely up to the developer. However, find mode can also be entered in one action and searched in another action. In between, the user may
manually enter values into fields to express the search criteria. They can then run the search action and a form's foundset will show the results of the search.
Any of the above search criteria may be used.

Example In this example there is a method which can both enter find mode as well as run a search when in find mode. In between the two different
invocations of this method, the user interface is ready to receive input from the user. When complete, the user may run the method again, this time the
foundset will search for results.

/**
 * @AllowToRunInFind
 *
 * @properties={typeid:24,uuid:"088B830C-2A4F-483C-A135-5FA32A010AE9"}
 */
function doFind(){
 if(foundset.isInFind()){ // if the foundset is already in find mode, run the search
 foundset.search();
 } else {
 foundset.find(); // otherwise, enter find mode
 }
}

Read-Only Fields

By default, even read-only fields will become editable for the duration of the find mode. This is often useful, because while a data provider may not be
available to edit, in find mode, it becomes a vehicle to enter a search criterion and should be editable to the user. However, in some cases it may be desired
that read-only fields remain so for the duration of find mode as well. Servoy provides a UI property which may be set through the Application API using the
method setUIProperty.

Example This example is identical to the above example with the exception, that for the duration of this find, the read-only property of fields is maintained.
After a find, it is set back to the default so as not to interfere with other functionality throughout the rest of the application.

/**
 * @AllowToRunInFind
 *
 * @properties={typeid:24,uuid:"088B830C-2A4F-483C-A135-5FA32A010AE9"}
 */
function doFind(){
 if(foundset.isInFind()){
 foundset.search();
 application.setUIProperty(APP_UI_PROPERTY.LEAVE_FIELDS_READONLY_IN_FIND_MODE, false) // reset
to the default
 } else {
 application.setUIProperty(APP_UI_PROPERTY.LEAVE_FIELDS_READONLY_IN_FIND_MODE, true); //
before entering find mode, enforce read-only fields
 foundset.find();
 }
}

Canceling Find Mode

Find mode can be programmatically cancelled by invoking the method of the foundset. The foundset will revert to the query prior to entering loadAllRecords
find mode. Within the Smart Client the user can cancel Find mode by pressing Escape. This will trigger the loadAllRecords command of the Form to which
the foundset is bound.

Complex Searches

Servoy's find mode can be used to easily satisfy even complex search requirements. Remember that any related foundset may be used to enter criteria and
that any number of search records may be used in any foundset and any operators may be used in combination for every data provider.

Find mode blocks the execution of any methods which are normally invoked from the user interface. This is a good thing as these methods may
have unintended consequences when a form's foundset is in find mode. Notice the JSDocs tag in the comment block @AllowToRunInFind
which precedes the method. This tag provides the metadata to let Servoy know that this method should be allowed to run while the form's
foundset is in find mode. Without this exception, this method would be blocked from execution, and there would be no recourse to
programmatically exit find mode.

https://wiki.servoy.com/display/DOCS/JSFoundSet#JSFoundSet-loadAllRecords

	Find Mode

