1of 3

Column Conversion

In This Chapter

® String Serialization
Blob Serialization
® Global Method Conversion
® Object to Database Method
® Example
® Database to Object Method
* Example
® Converted Object Type
® Example
® Column Converter from Java Code (plugin)

Some scenarios require that a value is stored in a database column in one form and written to and read from the database column in another form. Servoy
supports this requirement with a feature called Column Conversion and it has three applications: String Serialization, Blob Serialization and Global Method
Conversion.

Servoy also allows the contribution of a column converter by a java plugin.

String Serialization

Servoy supports object persistence using String Serialization, which involves the conversion of a runtime object into a string format, which can then be
persisted in a database column. When the column is read from the database, the persistent string will be deserialized back into a runtime object. Because
Servoy uses JavaScript as its scripting language, runtime objects will be serialized into standard JSON format.

1 String Serialization can only be used for column type TEXT.

/1 Construct an object to capture sonme customsettings and wite it directly to a Text columm called
'custom settings'

var obj = new Object();

obj . nane = 'foobar';

obj . nessage = 'Hello World';

/] at this point it is serialized into the string: "{nane:'foobar', nessage: ' Hello Wrld'}"
custom settings = obj;
dat abaseManager . saveDat a() ;

/1 ...read object properties at a later tinme...
appl i cation. out put (custom settings. mnessage + ' M nane is:

+ custom settings. nane);

1 Remember that only by assigning an object to a data provider will the serialized string be actually stored. It is not possible to set individual
instance properties of an object to directly modify the serialized string.

/| For Exanple

ny_dat a_provi der.property = 'Foobar'; // This will have no effect on the data provider

/'l Instead

var obj = ny_data provider; // read the data provider into a runtime object

obj . property = 'Foo Bar'; /1 Modify the Object's instance properties

ny_dat a_provi der = obj; /1 And reassign it to the data providerdatabaseManager. saveData();

Blob Serialization

Servoy provides Blob Serialization for persisting an object as a Blob. This involves converting the runtime object into a Blob, which is then persisted in the
database column. When retrieving the column data from the database, the Blob is deserialized back into a runtime object.

See code example at String Serialization.

http://en.wikipedia.org/wiki/JSON

20f3

1 Blob Serialization can only be used for column type MEDIA.

Global Method Conversion

Servoy allows a database column to be bound to custom business logic, giving developers control over how a value is converted when it is written to, and
read from the data provider.

1 The nomenclature refers to the Object Value, seen in the GUI, as well as used programmatically, and the Database Value, the value stored in
the data provider and persisting in the database.

The column is bound to two methods which facilitate the conversion between the Object Value and the Database Value. A developer may also specify an
optional Object Data Type, prompting Servoy to provide the data in an alternate data type in lieu of the default column type. This is useful when values are
stored in a non-standard storage type to accommodate legacy systems, but should be treated like standard data type in the runtime.

Object to Database Method

This method is called anytime a value is written to the data provider. It will be called regardless of the origin of the action, i.e. GUI event or programmatically.
It will be called before data is committed to the database.

Parameters

Object - The value that is being written to the data provider

String - The column's data type: TEXT, INTEGER, NUMBER, DATETIME, MEDIA
Returns

Object - The converted value that will actually be written to the data provider.

Example

Perhaps the most classic use case is the conversion between Sl Units, where a database is standardized on a certain unit, but an application requires that
values be written and read in multiple units, often to support different locales / preferences. Imagine a database column for temperature, which is
standardized on Celsius, but an application which allows data entry in Celsius, Fahrenheit and Kelvin.

/**

* This nmethod auto-converts fromclient units to Celsius as the value is being witten to the data provider
* @araneter {Object} value The val ue of the runtine object

* @araneter {String} columType The data type of the colum

* @eturns {bject} The val ue converted into cel sius

* @roperties={typeid: 24, uui d: " 303ACB93- 3BOE- 4B9C- 9550- D78FF17343C2"}

*/

function object ToDB(val ue, col umType) {

I/ evaluate client unit settings
swi tch(tenmpUnits){

/Il Already in C, just returnit as is
case C:
return val ue;

// Fahrenheit,use conversion formula
case F :
return (5/9)*(val ue-32);

/1 Kelvin,use conversion formla

case K :
return value - 273;

Database to Object Method

This method is called anytime a value is read from the data provider. It will be called when it is displayed in the GUI or read programmatically.

Parameters

https://wiki.servoy.com/display/DOCS/Object
https://wiki.servoy.com/display/DOCS/String
https://wiki.servoy.com/display/DOCS/Object

30f 3

Object - The value that is being read from the data provider
String - The column's data type: TEXT, INTEGER, NUMBER, DATETIME, MEDIA
Returns

Object - The converted value that will actually be displayed in the GUI and read programmatically.

Example

Perhaps the most classic use case is the conversion between S| Units, where a database is standardized on a certain unit, but an application requires that
values be written and read in multiple units, often to support different locales / preferences. Imagine a database column for temperature, which is
standardized on Celsius, but an application which allows data entry in Celsius, Fahrenheit and Kelvin.

/**

* This nmethod converts database values (Celsius) into the current client units for degrees
* @araneter {Cbject} value The value stored in the colum

* @araneter {String} columType The data type of the colum

* @eturns {Qbject} The value that was converted into current client units

* @roperties={typeid: 24, uui d: "63C4D552- 531C- 48DB- A6C6- ED02F4603C20" }

S

functi on dbToObj ect (val ue, col umType) {

/1 eval uate client unit settings
swi tch(tenmpUnits){

/1l Already using C, just returnit as is
case C:
return val ue;

/| Fahrenheit, use conversion formula
case F :
return (9/5) * value + 32;

/1 Kelvin, use conversion formla

case K :
return value + 273;

Converted Object Type

One can optionally specify the data type of the Object Value. This is useful in situations where the stored value is a different data type than the object value.

Example

The application talks to a database that is storing dates as 8-character text columns to support legacy applications. By setting the Converted Object Type
setting to DATETIME, Servoy will treat the column as a date object. Moreover, the two conversion methods written by the developer should assume the
Object Value is a Date object.

/**
* This nethod converts Text data stored in the database colum, presenting it as Date object
* @araneter {Cbject} value The value stored in the colum
* @araneter {String} columType The data type of the colum
* @eturns {Object} The value that was converted
* @roperties={typeid: 24, uui d: "16BDC049- E63B- 47CA- B49C- 595D916FD51B" }
S
functi on dbToObj (val ue, col umType) {
return utils.dateFornat (val ue,' Mddyyyy') ;
}

Column Converter from Java Code (plugin)

A Column converter can be contributed by a java plugin. See Providing Converters and Validators from Plugins for more information.

https://wiki.servoy.com/display/DOCS/Object
https://wiki.servoy.com/display/DOCS/String
https://wiki.servoy.com/display/DOCS/Object
https://wiki.servoy.com/display/DOCS/Date
https://wiki.servoy.com/display/DOCS/Providing+Converters+and+Validators+from+Plugins

	Column Conversion

