
1 of 3

Table Events
Servoy provides an event model at the data layer, giving developers the opportunity to implement validation and execute business logic just before and after
data changes are committed to the database. There are twelve each of which may be bound to an entity or a global method.Table Events,

The first three events occur just prior to the change being committed to the database. Moreover, the event handler has the opportunity to veto the event,
preventing the change from being committed. This is and ideal location to implement fail-safe data rules.

onRecordInsert - occurs prior to a new record being inserted into the table
onRecordUpdate - occurs prior to an existing record being updated in the database
onRecordDelete - occurs prior to an existing record being deleted from the database

An event is bound to an entity or a global method, which is invoked when the event occurs. The record that is modified is passed in as an onRecordXXX
argument and the method can veto the change by returning false or throwing an exception.

Parameters

JSRecord - the record object that is to be inserted, updated or deleted

Returns

Boolean - Return true from this method to allow the change to commit to the database. Returning false will result in not allowing to process the change.

Example

This is an example of an handler for an table. The data rule is that posted invoices will never be deleted by the application.onRecordDelete invoices

/**
 * Record pre-delete trigger.
 * Validate the record to be deleted.
 * When false is returned the record will not be deleted in the database.
 * When an exception is thrown the record will also not be deleted in the database but it will be added to
databaseManager.getFailedRecords(),
 * the thrown exception can be retrieved via record.exception.getValue().
 *
 * @param {JSRecord} record record that will be deleted
 * @returns {Boolean} true to allow a delete
 * @properties={typeid:24,uuid:"A3F02F99-B899-46BE-9125-66E4189F043F"}
 */
function onRecordDeleteInvoice(record) {

 if(record.is_posted)
 throw "Cannot delete a posted invoice";

 return true;
}

The next three events occur immediately following the commit to the database. This is an ideal mechanism to update the data model after data is known to
have changed.

afterRecordInsert - occurs subsequent to a new record being inserted into the table
afterRecordUpdate - occurs subsequent to an existing record being updated in the database
afterRecordDelete - occurs subsequent to an existing record being deleted from the database

An event is bound to an entity or a global method, which is invoked when the event occurs.afterRecordXXX

Parameters

JSRecord - the record object that was recently inserted, updated or deleted

Example

This is an example of an handler for a table. The data rule is that a new project record will be linked, via the table, afterRecordInsert projects projects_users
to the current user.

Throwing an exception in the event method will result in a with a error code, which may be handled in the Servoy Exception SAVE FAILED
solution's event handler.onError

https://wiki.servoy.com/display/DOCS/JSRecord
https://wiki.servoy.com/display/DOCS/Boolean
https://wiki.servoy.com/display/DOCS/JSRecord
https://wiki.servoy.com/display/DOCS/ServoyException
https://wiki.servoy.com/display/DOCS/ServoyException#ServoyException-ServoyException-SAVEFAILED
https://wiki.servoy.com/display/DOCS/Solution#Solution-Solution-onError

2 of 3

/**
 * Record after-insert trigger.
 *
 * @param {JSRecord} record record that is inserted
 *
 * @properties={typeid:24,uuid:"92834B20-1CAC-472F-B022-DD97FEFEA792"}
 */
function afterRecordInsert(record) {
 if(record.projects_to_projects_users.newRecord()){ // create a link record
 record.projects_to_projects_users.user_id = globals.currentUserID; // associate to
current user
 databaseManager.saveData();
 }
}

The next three events occur just prior to the operation intended to be done on the foundset. The event handler has the opportunity to prevent the operation
to take place. This is an ideal place to set fail-safe data rules.

onFoundSetRecordCreate - occurs prior to a new record being created in the foundset
onFoundSetFind - occurs prior to the foundset going into find mode
onFoundSetSearch - occurs prior to executing a search on the foundset

An event is bound to an entity or a global method, which is invoked when the event occurs. The method can veto the change by returning onFoundSetXXX
false or throwing an exception.

Parameters

The event receives two parameters:onFoundSetSearch

clearLastResults - which tells whether or not to clear previous searchBoolean
reduceSearch - which tells to reduce (true) or extend (false) previous search resultsBoolean

Returns

Boolean - Return true from this method to allow the intended operation to take place on the foundset. Returning false will result in not allowing to process the
operation.

Example

This is an example of an handler. The data rule is that the foundset doesn't go into find mode if there are no records in the table.onFoundSetFind

/**
 * Foundset pre-find trigger.
 * When false is returned the foundset will not go into find mode.
 *
 * @returns {Boolean}
 *
 * @properties={typeid:24,uuid:"9FE55B79-E5D1-4B7D-82CD-D0E8CF6B6725"}
 */
function onFoundSetFind() {
 if(record_count == 0) // record_count is an aggregation defined for the table, which counts the records
 return false;
 return true;
}

The last three events occur immediately following the operation executed on the foundset.

afterFoundSetRecordCreate - occurs subsequent to the creation of a new record
afterFoundSetFind - occurs subsequent to entering find mode
afterFoundSetSearch - occurs subsequent to performing the search for a foundset

An event is bound to an entity or a global method, which is invoked when the event occurs.afterFoundSetXXX

Parameters

The event receives parmeter which is the record object that was recently crated.afterFoundSetRecordCreate JSRecord

Example

Throwing an exception in the event method will result in a with a error code, which may be handled in the Servoy Exception SAVE FAILED
solution's event handler.onError

https://wiki.servoy.com/display/DOCS/Boolean
https://wiki.servoy.com/display/DOCS/Boolean
https://wiki.servoy.com/display/DOCS/Boolean
https://wiki.servoy.com/display/DOCS/JSRecord
https://wiki.servoy.com/display/DOCS/ServoyException
https://wiki.servoy.com/display/DOCS/ServoyException#ServoyException-ServoyException-SAVEFAILED
https://wiki.servoy.com/display/DOCS/Solution#Solution-Solution-onError

3 of 3

This is an example of an handler for table. The data rule is that every new record added to the foundset will have a afterFoundSetRecordCreate book_text
predefined text on the column. comment_text

/**
 * Record after-create trigger.
 *
 * @param {JSRecord<db:/example_data/book_text>} record record that is created
 *
 * @properties={typeid:24,uuid:"CCDA9A02-7E4D-4A82-9815-B030BBDB1ED0"}
 */
function afterFoundSetRecordCreate(record) {
 record.comment_text = "Some predefined comment text.\n"
}

	Table Events

