
1 of 14

JavaScript Basics

In This Chapter

Introduction to JavaScript
Basic Programming Terminology
Execution Order
Case Sensitivity

Lowercase Keywords
Camel Casing (camel-back)

Whitespace
Whitespace Ignored
Whitespace Not Ignored (exception)

Using Semicolons
Single Statement
Multiple Statements on One Line
Multiple Statements on Multiple Lines

Using Curly Braces
Indenting
Commenting

Single Line Comments
Multiple Line Comments

Keywords
new
var

JavaScript Grammar
Variables
Introduction to Declaring Variables
Data Types

Primitive Data Types
String
Numeric
Boolean
Undefined
NULL

Composite Data Types
Object
Array
Function

Weak Typing
Operators

Arithmetic
Increment/Decrement
Logical
Tertiary Statement

Expressions
Statements
Objects
Properties
Functions and Methods

Browser DOM vs. Servoy SOM
Object Model
Document Object Model (DOM)
Solutions Object Model (SOM)

Object References
Object
Constructor
Properties
Functions
Methods
Forms
Elements

Introduction to JavaScript

JavaScript was originally developed by Brendan Eichof Netscape under the name Mocha, which was later renamed to LiveScript and finally to JavaScript.
JavaScript code, much like other programming languages, is made up of statements which serve to make assignments, compare values and execute other
sections of code.

JavaScript:

Is interpreted line-by-line
Is case sensitive
Ignores whitespaces
Uses semicolon at the end of each statement

2 of 14

Uses blocks (with curly braces)
Uses identing in code
Uses commenting symbols
Uses keywords

Basic Programming Terminology

JavaScript has some basic programming terms:

Name Definition Examples

Token The smallest indivisible lexical unit of the language; a contiguous sequence of characters whose meaning
would change if the characters were separated by a space.

All identifiers; literals like 3.14
and .'This is a string'

Literal A value found directly in the script. 3.14, 'This is a string'

Identifier The name of a variable, object, function or label. x, , myValue userName

Operator Tokens that perform built-in language operations like assignment, addition and substraction. =, , , + - *

Expressi
ons

A group of tokens; often literals or identifiers, combined with operators that can be evaluated to a specific
value.

2.0, , 'This is a string.' (x + 2) * 4

Iterations Executing the same set of instructions a given number of times or until a specific result is attained. for (var i = 0; i < 10; i++) // set i =
0, if i < 10, add 1 to i

Stateme
nt

An imperative command, usually causes the state of the execution environment to change. var x = x + 2;
 if(x == 4) {

 alert('It is x');
}

Keyword A word that is part of the language, may not be used for identifiers. while, , , do function var

Reserve
d word

A word that may become part of the language; may not be used as identifiers. break, , import public

Execution Order

JavaScript is interpreted (executed) line-by-line as it is found in a piece of code (script)

Case Sensitivity

JavaScript is case sensitive, meaning that capital letters are distinct from their lowercase counterparts.

For example, the following identifiers refer to separate, distinct values:

result
Result
RESULT

Case sensitivity applies to all aspects of the JavaScript language:

Keywords
operators
Variable names
Event handlers
Object properties

Lowercase Keywords

All JavaScript keywords are lowercase. For example, when you use a feature like an statement, make sure that you type and not or .if if If IF

Camel Casing (camel-back)

Note

For a complete list of reserved words, please check the TODO: reference to reserved words section.

3 of 14

JavaScript uses the camel casing (mixed casing) naming convention for functions, methods and properties. If a name is one word, then the name is made of
all lowercase characters. If more words are used to form a name, the first word is lowercase followed by the next word(s) which all start with a capital letter.

Here some examples:

displayType
getTimeZoneOffset
round
toFixed

Whitespace

JavaScript applies these rules to the use of the whitespace in coding.

Whitespace Ignored

JavaScript ignores those characters that take up space on the screen without visual representation or without necessary meaning.

For example:

x = x + 1

Can be written like:

x=x+1

or:

x = x + 1

Whitespace Not Ignored (exception)

However, most operations other than simple arithmetic functions require a space to make their meaning clear.

For example:

s = typeof x

and:

s = typeofx

do not have the same meaning. The first statement invokes the operator on a variable and places the result in . The second statement copies the typeof x s
value of a variable called into .typeofx s

Whitespaces within a string, between single or double quotes, are preserved. For example:

var s = 'This spacing is preserved.';

Using Semicolons

A semicolon indicates the end of a JavaScript statement. You can use a semicolon for:

A single statement
Multiple statements on one line

Note

No spaces and punctuations are using with forming these names.

4 of 14

Multiple statements on multiple lines

Single Statement

Example:

x = x + 1;

Multiple Statements on One Line

Example:

x = x + 1; y = y + 1; z = 0;

Multiple Statements on Multiple Lines

Example:

x = x + 1;
y = y - 1;

Using Curly Braces

JavaScript uses curly braces to group a list of statements together into one larger statement, known as a block statement.{}

Here an example of statements that make up the body of a function:

function add(x, y) {
 var result = x + y;
 return result;
}

Here is an example of more than one statement to be executed:

if (x > 10) {
 x = 0;
 y = 10;
}

Indenting

Here is an example to show standard identing in JavaScript code:if else

var x = 5;
if (x > 1) {
 if (x > 2) {
 alert('x > 2');
 alert('Yes, x > 2');
 }
} else {
 alert('x <= 1');
 alert('Yes, x <= 1');
}
alert('Moving on.');

Note

You do not need to use a semicolon for the last statement of a method (script).

5 of 14

Here is an explanation, step-by-step of the identing example:

Line Step Indenting Semicolon Purpose

1 var x = 5; No Yes Declare variable.

2 if (x > 1) { No No First condition with open curly brace for block statement.if

3 if (x > 2) { Forward No Second condition with opening curly brace for block statement.if

4 alert('x > 2'); Forward Yes First statement for second condition.if

5 alert('Yes, x > 2'); No No Second statement for second condition.if

6 } Back No Close curly brace for block statement of second statement.if

7 } else { Back No Close curly brace for block statement of first condition, condition and open curly bracket for block if else
statement.

8 alert('x <= 1'); Forward Yes First statement for condition.else

9 alert('Yes, x > 2'); No Yes Second statement for condition.else

10 } Back No Close curly brace for block statement of condition.else

11 alert('Moving
on.');

No Yes Final statement of the block.

Commenting

An important aspect of good JavaScript code (and actually all code) is commenting. Commenting means:

You can insert remarks and commentary directly into your code.
Included comments will be ignored by the JavaScript interpreter.

Single Line Comments

Single line comments begin with a double forward slash . The interpreter will ignore everything from that point until the end of the line.//

Example:

var count = 10; // holds a number of items

Multiple Line Comments

Multiple line comments (similar to C programming) are enclosed between forward slash and asterix / at the beginning of the comment and an asterix and
 at the end of the comment. Everything in between is ignored by the interpreter.forward slash /

Example:

/* Both x = 0 and y = 10
 statements will be executed
 when the if statement is true.
*/
if (x > 10) {
 x = 0;
 y = 10;
}

Keywords

Keywords are part of the set of JavaScript reserved words.

Note

It's not possible to nest comments and will result in an error.

6 of 14

new

the keyword enables you to create your own object and is used for an object's constructor.new

Example:

var myArray = new Array();
myArray[0] = "Thomas";
myArray[1] = "Bob";

TODO: reference to "Object references".

var

The keyword is used to declare variables.var

Example:

var x = 2;

JavaScript Grammar

Here are the main elements of JavaScript grammar:

Variables
Data types
Operators
Expressions
Statements
Objects
Properties
Functions and methods

Variables

Variables are used to stored data. Each variable has a name, called its identifier. Variables are declared in JavaScript using the keyword. This keyword var
allocates storage space for new data and indicates that a new identifier is in use.

Introduction to Declaring Variables

When you declare a variable you can do that with or without assigning a value to it.

This example shows how to declare a variable without assigning a value to it:

var x;

This example shows how to assign a value when declaring a variable:

var x = 0;

You can also declare multiple variables by using one statement:var

Note

For a list of reserved words, please check the "JavaScipt reserved words" section.

Note

You should not use variables without first declaring them. Using a variable on the right-hand side of an assignment without first declaring it will
result in an error.

7 of 14

var x, y = 1, z;

Data Types

JavaScript knows two categories of data types:

Primitive (basic) data types
Composite data types

Primitive Data Types

These are primitive or basic data types, which contain one kind of data, for variables:

String
Number
Boolean
Undefined
NULL

String

A string is a list of characters. A string literal is indicated by enclosing characters in single quotes or double quotes .' "

For example:

var myString = 'JavaScript has strings.";

Any alphabetic, numeric or punctuation characters can be placed in a string.

However, there are some exceptions known as escape codes. An escape code (also called escape sequence) is a small amount of characters preceded by
a backslash that has a special meaning to the JavaScript interpreter. Escape codes allow you to enter special representative characters witout typing them
directly into your code.

Let's say that you want to declare two lines of text in a variable:

var myString = 'This is the first line.
This is the second line';

The way this is done will result in a syntax error, because JavaScript interprets the second line as a separate statment. The correct way to do this is by using
an escape character:

var myString = 'This is the first line.\nThis is the second line.";

Here a list of escape codes:

Escape code Value

\b Backspace

\t Horizontal tab

\n Line feed (new line)

\v Vertical tab

\f Form feed

\r Carriage return

\' Single quote

\" Double quote

\\ Backslash

\OOO Latin-1 character represented by the octal digits OOO. The valid range is 000 to 377.

\xHH Latin-1 character represented by the hexidecimal digits HH. The valid range is 00 to FF.

\uHHHH Unicode character represented by the hexidecimal digits HHHH.

8 of 14

Numeric

Numbers are integers or floating-point numeric values:

var myNumber = 3.14;

Boolean

Boolean data types take on one of two possible values: or . A boolean literal is indicated by using these values directly in the code:true false

var myBoolean = true;

Undefined

An undefined data type is used for variables and object properties that do not exist or have not been assigned a value. The only value an undefined type can
have is :undefined

var x;
var x = String.noSuchProperty;

NULL

The NULL value indicates an empty or non-existent value, but the data type is defined. The only value a NULL data type can have is NULL:

var x = null;

Composite Data Types

Composite data types are made up of strings, numbers, booleans, undefined values, null values and even other composite types. These are the three
composite types:

Object
Array
Function

Object

An object can hold any type of data and is the primary mechanism by wich tasks are carried out. Data contained in an object are properties for the object.
Properties are accessed with the dot operator followed by the property name:.

objectName.propertyName

Array

The array data type is an ordered set of values grouped together under a single identifier. The easiest way to create an array is to define it as a standard
variable and then group the set of values in brackets:

var myArray = [1, 5, 68, 3];

Arrays can contain data of different data types:

var myArray = ['Bob', 5, true, x];

To create an array with no length:

var myArray = new Array();

Note

When undefined and NULL data types are being compared, the result will be true.

9 of 14

To create an array with a predetermined length, but no specific data:

var myArray = new Array(4);

The elements of an array are accessed by providing an index value within brackets. In the following example variable equals and variable equals :x Bob y true

var myArray = new Array('Bob', 5, true, x);
var x = myArray[0];
var y = myArray[2];

Function

Functions are used to keep code that performs a particular job in one place, making the code reusable. In Servoy, built-in functions are accessible from the
method editor.

Weak Typing

One of the major differences between JavaScript and other programming languages is that JavaScript is weakly typed. This means that the type of variable
is inferred from the variable's content. As a result, the data type can change the moment you put data into the variable of another type than it previously
contained.

For example, first we assign a string value to the variable and after that we assign a numeric value to it:

var x = 'Hello';
x = 5.25;

Operators

Basic operators include:

Arithmetic
Increment and decrement
Logical
Comparison
Tertiary statement

Arithmetic

Here are the common arithmetic operators:

Assignment =
Addition +
Substraction or unary negation -
Multiplication *
Division /
Modulus %

For example:

x = a + b;
x = a - b;

Increment/Decrement

This example shows how is set to the value of before is incremented by 1.a b b

a = b++;

This example shows how is set to the value of after is incremented by 1.a b b

a = ++b;

This example shows how is set to the value of before is decremented by 1.a b b

10 of 14

a = b--;

This example shows how is set to the value of after is decremented by 1.a b b

a = --b;

Logical

Here are some logical operators:

Operator Example Description

&& if (x == 0 && y == 0) Returns if equals AND equals .true x 0 y 0

|| if (x == 0 || y == 0) Returns if equals OR equals _0.true x 0 y

Here are some comparison operators:

Operator Example Description

== a == b Returns if and are equal.true a b

!= a != b Returns if and are not equal.true a b

> a > b Returns if is greater than .true a b

< a < b Returns if is less than .true a b

>= a >= b Returns if is greater than or equal to .true a b

<= a <= b Returns if is less than or equal to .true a b

Tertiary Statement

Here is a tertiary statement:

x = if (test, result one, result two);

This example shows if is greater than or is equal to then = and otherwise = .p 25 x yes x no

x = (p >= 25) ? 'yes' : 'no'

Expressions

Expressions are the building blocks of many JavaScript statements. Any combination of variables, operators and statements which evaluate some result, like
a sentence or a phrase. Literals and variables are the simplest kind of expressions and can be used to create more complex expressions.

For example:

var x = 3 + 3;

Statements

Statements are the essence of JavaScript. They are a set of instructions to carry our specific actions. JavaScript statements may take the form of
conditionals, loop or object manipulations.

One of the most common statements is an assignment. This is a statement that uses the operator and places the value on the right-hand side into the =
variable on the left. Here is an example of an assignment:

x = y + 10;

11 of 14

Objects

Objects are a critical concept and feature of JavaScript. An object is a collection that can be primitive or composite data, inclusing functions and other
objects.

Objects are created using constructors. These are mthods that create a fresh instance of an object for you to use. Objects can be created by using the new
keyword, the name of the object and open and closed parentheses. The parentheses tell the interpreter that you want to invoke the constructor method for
the given object.

This example shows the creation of a new string object:

var myString = new String();

Properties

The members of an object are called properties. Properties are accessed by placing a period immediately following the name of the object..

For example, is a property of the object :length string

myString.length

Functions and Methods

A JavaScript function is quite similar to a procedure or subroutine in other programming languages. A function is a discrete set of statements which perfom
some actions. It may accept incoming values (parameters) and it may return an outgoing value.

a function is called from a JavaScript statement to perform its duty.

A method is simply a function which is contained in an object and is a member function of the object. Methods of objects are accessed the same way as
properties, with trailing parentheses immediately following the name of the method. If the method takes arguments (parameters), the arguments are included
in the parentheses.

For example:

application.output('Hello World.');

Browser DOM vs. Servoy SOM

The Servoy Solutions Object Model (SOM) and the W3C Document Object Model (DOM) are both object models.

Object Model

An object model:

Defines the interface used by scripts to look at and manipulate structured information, like an HTML document.
Determines the make-up and characteristics of an object's component parts.
Defines how the parts work.

Document Object Model (DOM)

Note

The assignment operator should not be confused with the "is equal to" comparison operator which is used in conditional expressions.= ==

Note

Servoy can reference a large number of built-in JavaScript objects.

Note

In Servoy, both methods and functions are accessible from the Servoy Solution Explorer.

12 of 14

The DOM is primarily defined by the last two kinds of objects; browser objects and document objects.

In the past, different browsers have included or modified slightly different features for manipulating document objects. However, these objects now have
been standardized by the World Wide Web Consortium (W3C) Document Object Model.

The Document Object Model (DOM) is a standardized Application Programming Interface (API) with a platform-independent language, whose intent is to:

Enabled programmers to write applications that work with all browsers and servers on any platform.
Allow programs to dynamically connect and update the content, structure and style of a document.
Define a tree-like representation of the document (also referred to as the DOM tree) so the user can interact with any part of the hierarchy of
elements.

Solutions Object Model (SOM)

The Solutions Object Model (SOM) provides a JavaScript-based onject model for Servoy solutions, defined in large part by the first two kinds of JavaScript
objects explained above (user-defined objects and buiilt-in objects). Similar to the DOM, the SOM core defines a tree-like representation of Servoy, also
known as the SOM tree. All elements are related to each other in hierarchical way.

The DOM is limited to being defined by and acting on browsers and browser documents.

Servoy is a rapid application development (RAD) and deployment environment heavily focused on database applications.

Here an overview of the Servoy SOM:

Object References

Here is a list of the JavaScript object references and how they apply to Servoy:

Object

13 of 14

Constructor
Properties
Functions
Methods
Forms
Elements

Object

An object is a collection that can hold any type of data, including functions and other objects and is the primary mechanism for carrying our useful tasks.

Constructor

Objects are created using constructors. These are methods that create a fresh instance of an object.

For example:

var myObject = new Object();

Properties

Data contained in an object are said to be properties of the object. Properties are accessed with a dot operator (a period) followed by the property name..

Syntax:

objectName.propertName

Functions

Functions are a special type of JavaScript object that contains executable code. A function is called (invoked) by following the function name with
parentheses . The parenthesis can contain parameters (arguments) which are pieces of data that are passed to the function when it is invoked.()

Syntax:

objectName.functionName()

Methods

Functions that are part (a member) of objects are know as methods.

Syntax:

objectName.methodName

Forms

The forms collection contains objects that reference all forms in a solution.

If the form you are referencing is the currently active form, the syntax is:

controller.methodName

If the form you are referencing is not the currently active form, the syntax is:

forms.formName.controller.methodName

Note

For a complete list of Servoy built-in functions, please refer to the TODO: Programming Reference Guide -> Runtime API section.

14 of 14

Elements

The elements collection contains objects contained in the form. You can access elments such as fields, buttons, labels, images, portals, tabpanels and
JavaBeans.

If the form you are referencing is the currently active form, the syntax is:

elementName.propertyName

If the form you are referencing is notthe currently active form, the syntax is:
Syntax:

forms.formName.elementName.propertyName

	JavaScript Basics

