
1 of 3

Implementing Business Logic

In This Chapter

Overview
Scope
Creating a Variable

Create a Scope Variable (two ways)
Create a Form Variable (two ways)

Creating a Method
Create a Scope Method in One of Two Ways
Create a Form Method in One of Two Ways

Implementing Basic Business Logic
Insert a Code Fragment
Insert Sample Code

Overview

While the Servoy platform is based entirely in Java, one does not need to write Java during the course of development or deployment.any

Instead, all business logic is implemented using JavaScript. JavaScript was selected because it is an internet standard, easy to learn and as such, the most
widely used scripting language on the planet. JavaScript is far more productive than coding in pure Java and Servoy provides robust APIs with which to
quickly and easily implement business logic.

Scope

Scope defines the domain in which code is executed and subsequently determines the namespace by which scripted objects are referenced. JavaScript
code (functions and variables) may be defined in the following scopes:

solution-wide scopes:

Global Scope: Found in the globals.js file and accessible via the namespace globals, i.e.

scopes.globals.createNewCustomer(); // invokes the global method defined in the 'globals' scope

form scopes

Form Scope: Found in the formName.js file and accessible via the namespace forms.formName, i.e.

forms.customers.controller.newRecord(); // invokes a form object from another scope

compared to:

function createNewCustomer(){ // a method defined within the 'customers' form scope

 controller.newRecord(); // invokes the same form object from within the form's scope. Notice the fully
qualified namespace is NOT required

}

1.
2.
3.

Note

Developers who are familiar with JavaScript may cite issues with browser support and speed of execution.

However, it is worth noting that Servoy does not deploy any JavaScript. All code written in Servoy is deployed using project, which Mozilla's Rhino
is an open-source, Java-based JavaScript implementation.

This means that:

All methods are executing in Java (orders of magnitude faster than interpreted JavaScript)
No business logic is ever exposed or executed in the browser, thereby eliminating browser support issues.
Experienced developers can optionally use 3rd-party java APIs, mixing Java code directly in their Servoy methods.

http://www.mozilla.org/rhino/

2 of 3

1.
2.
3.

1.
2.
3.

1.
2.
3.

1.
2.
3.

1.
2.
3.

1.
2.
3.

1.
2.
3.

1.
2.
3.

Creating a Variable

Create a Scope Variable (two ways)

:From context menu

From the tree, navigate to the > > > node.Solution Explorer active solution Scopes myScope variables
Right-click the node and select from the pop-up menu. variables Create Variable
Choose a variable name, a data type and optionally choose an initial value. The variable declaration will be generated in the file, which myScope.js
will be opened in the Script Editor.

:From Solution Explorer toolbar

From the tree, navigate to the > > > node. Solution Explorer active solution Scopes myScope variables
Select the node and click the button from the lower toolbar in the Solution Explorer. variables Create Variable
Choose a variable name, a data type and optionally choose an initial value. The variable declaration will be generated in the file, which myScope.js
will be opened in the Script Editor.

Create a Form Variable (two ways)

:From context menu

From the tree, navigate to the > > > node.Solution Explorer active solution Forms myForm variables
Right-click the node and select from the pop-up menu. variables Create Variable
Choose a variable name, a data type and optionally choose an initial value. The variable declaration will be generated in the file, which myForm.js
will be opened in the Script Editor.

: From Solution Explorer toolbar

From the tree, navigate to the > > > node. Solution Explorer active solution Forms myForm variables
Select the node and click the button from the lower toolbar in the Solution Explorer.variables Create Variable
Choose a variable name, a data type and optionally choose an initial value. The variable declaration will be generated in the file, which myForm.js
will be opened in the Script Editor.

Creating a Method

Create a Scope Method in One of Two Ways

: From context menu

From the tree, navigate to the > > node.Solution Explorer active solution Scopes myScope
Right-click the node and select from the pop-up menu.myScope Create Method
Choose a method name. The method declaration will be generated in the file, which will be opened in the Script Editor.myScope.js

: From Solution Explorer toolbar

From the tree, navigate to the > > node.Solution Explorer active solution Scopes myScope
Select the node and click the button from the lower toolbar in the Solution Explorer. myScope Create Method
Choose a method name. The method declaration will be generated in the file, which will be opened in the Script Editor.myScope.js

Create a Form Method in One of Two Ways

: From context menu

From theSolution Explorertree, navigate to the > > node. active solution Forms myForm
Right-click themyFormnode and selectCreate Methodfrom the pop-up menu.
Choose a method name. The method declaration will be generated in themyForm.jsfile, which will be opened in the Script Editor.

: From Solution Explorer toolbar

From the tree, navigate to the > > node. Solution Explorer active solution Forms myForm
Select the node and click the button from the lower toolbar in the Solution Explorer. myForm Create Method
Choose a method name. The method declaration will be generated in the file, which will be opened in the Script Editor.myForm.js

Implementing Basic Business Logic

To implement some business logic, create a method and fill in the body of the JavaScript function with executable code.

3 of 3

1.
2.

1.
2.

1.
2.

1.
2.

The following example implements the functionality to advance the selected record index on a form:

function nextRecord(){

 var index = controller.getSelectedIndex(); // store the current index

 controller.setSelectedIndex(index+1); // increment the index by 1

}

The example uses the form's object, part of the JavaScript API provided by Servoy.controller

Developers need not memorize the API or look it up. The scripting APIs are self documenting, and code fragments can easily be inserted into the Script
Editor.

Insert a Code Fragment

Any scripting API (including methods written by a developer) can be inserted directly into the Script Editor in two ways.

: From context menu

From the tree, navigate to and select the node of a scriptable resource, (i.e. > > >). Solution Explorer active solution Forms myForm controller
In the list of methods and properties provided in the lower part of the , right-click the method or property wished to be invoked Solution Explorer
and select . The code will be copied into the Script Editor and will be referenced with the correct namespace for the current scope. It Move Code
may be needed to fill in specific arguments.

: From Solution Explorer toolbar

From the tree, navigate to and select the node of a scriptable resource.Solution Explorer
 In the list of methods and properties provided in the lower part of the , select the method or property wished to be invoked and Solution Explorer
click the button in the lower toolbar of the The code will be copied into the Script Editor and will be referenced with Move Code Solution Explorer.
the correct namespace for the current scope. It may be needed to fill in specific arguments.

Insert Sample Code

Any scripting API's commented sample code can be inserted directly into the Script Editor in two ways.

: From context menu

From the tree, navigate to and select the node of a scriptable resource, (i.e. > > >).Solution Explorer active solution Forms myForm controller
In the list of methods and properties provided in the lower part of the , right-click the method or property wished to be invoked Solution Explorer
and select . A verbose, commented sample will be copied into the Script Editor.Move Sample

: From Solution Explorer toolbar

From the tree, navigate to and select the node of a scriptable resource.Solution Explorer
In the list of methods and properties provided in the lower part of the , select the method or property wished to be invoked and Solution Explorer
click the button in the lower toolbar of the A verbose, commented sample will be copied into the Script Editor.Move Sample Solution Explorer.

Tip

Any scripting API (including methods written by a developer) can be auto-completed using key strokes.

To use , begin typing the code to be executed, then hit on the keyboard. A type-ahead list of available scripting auto-complete Ctrl+space
 allowing for choosing from them while typing. This is a highly productive and accurate way to write code when one has objects will appear

become more familiar with the APIs.

Tip

For developers not so familiar with JavaScript, there is an easier way to use the JavaScript API. In the , navigate to the Solution Explorer JS Lib
node. This node contains a list of APIs for dealing with the JavaScript language and native data types. It even contains syntax completion for
common statements in the node.Statements

	Implementing Business Logic

