
1 of 2

Angular services
Services are similar to WebComponents except they have no user interface. They are mapped in solution code to the " scope - in order to be able plugins"
to call their api from scripting.

A service must contain at least the and the client-side .specification file js file

The . See the section. However, as there is no UI, service specification file is mostly the same as for web components specification (.spec file) there is
. Another difference is that and for model properties for services.no support for handlers default values initial values are currently ignored

It is recommended to have the suffix "services" in your service (for example default servoy services are found into "servoyservices" directory) package name
- to avoid naming collisions between component and service packages. Furthermore, in order to avoid naming collisions among services themselves, a new
service name should adhere to the same naming convention as .WebComponents

A service can get it's client side scope from the angular service/factory that the system provides. On that you can ask for the service scope: $services

 $services.getServiceScope(serviceName);

This returns an angular $scope instance; that one holds a model property that is the javascript object that is kept in sync between server and client (just as it
happens for a webcomponent). That scope instance can also be used to add watches on its own properties - so that the service can interact with state
changes from the server. This is for example very handy if the service must interact with a browser refresh; then the state is transferred over to the client and
the service should use the model state of the scope to reconstruct it's behavior. Watches can be added in an angular run function that is executed when the
browser page loads.

When a service scope (the model object) is changed by a server push-to-client, or when a service api function is called, the system will call the angular
$digest() function on the scope object of the service. This way all the watches that are on that service scope will be evaluated by angular. If your service can
be used throughout the whole page - so webcomponents are using your service to get state from it (webcomponent do have watches on your service) then
you have to make sure that you call the rootScope digest so that a full digest cycle will happen:

 if (!$rootScope.$$phase) $rootScope.$digest();

The if is for checking if there is already a digest cycle happening, else you call the $rootScope $digest method so that all the watches of the page are
evaluated and webcomponents or other services that have watches on your state will see the change.

Services can also have - just like webcomponents, The same kind of object structure is then also provided, so there is a $scope object server side api
which has a model property that is the object that is synced between server and client.

An example service:

testservice.spec

{
 "name": "mypackage-testservice",
 "displayName": "Test service that says helloworld",
 "definition": "servoyservices/testservice/testservice.js",
 "libraries": [],
 "model":
 {
 "text": "string"
 },
 "api":
 {
 "talk": {
 },
 "helloworld":
 {
 "parameters":
 [
 {
 "name":"text",
 "type":"string"
 }
]
 }
 }
}

The service js file must define the api from the spec:

https://wiki.servoy.com/pages/viewpage.action?pageId=1869552
https://wiki.servoy.com/pages/viewpage.action?pageId=1869552

2 of 2

testservice.js

angular.module('mypackageTestservice',['servoy'])
.factory("mypackageTestservice",function($window,$services) {
 var scope= $services.getServiceScope('mypackageTestservice');
 return {
 talk: function() {
 alert("talk: " + scope.model.text);
 scope.model.text = "something else"
 },
 /**
 * Say hello.
 * @param {string} name your name
 */
 helloworld: function(name) {
 alert("Hello " + name);
 }
 }
})
.run(function($rootScope,$services)
{
 var scope = $services.getServiceScope('mypackageTestservice');
 // watch the whole model (you can also use 'model.text' to only watch the text property)
 scope.$watch('model', function(newvalue,oldvalue) {

 // handle state changes
 }, true);
})

From scripting, when calling plugins.testservice.talk() it should execute the service talk method. The service model is automatically synchronized with the
server. In order to observe server side modifications the service must add a watch to the service state.

A service can have a that will be called when solution is closed in order to clear its state.method called "cleanup"

It is possible to use TypeScript for writing the service code, see How to use TypeScript for Web Package projects

https://wiki.servoy.com/display/DOCS/How+to+use+TypeScript+for+Web+Package+projects

	Angular services

