
1 of 7

RESTful Web Services
The RESTful Web Service plugin allows exposing business logic as a RESTful Web Service. 

In This Chapter
About RESTful Web Services
Implementing a RESTful Web Service in Servoy

Keeping It Stateless
Supporting GET Requests
Supporting POST Requests
Supporting DELETE Requests
Supporting PUT Requests
Adding Extra Data to the Request URL
Supported Content Types & Encoding
Returning Binary Data
Setting Custom Headers
Returning Custom Status Codes

Authentication/Authorization
Global Restrictions Based on Servoy Security
Custom Endpoint Restrictions

JSONP support
Pool of Clients
Sample Solution
More information on RESTful Web Services
API Docs

rest_ws_plugin_authorized_groups
rest_ws_plugin_client_pool_exhausted_action
rest_ws_plugin_client_pool_size

About RESTful Web Services
RESTful Web Services utilize the features of the HTTP Protocol to provide the API of the Web Service. For example, it uses the HTTP Request Types to 
indicate the type of operation:

Operation HTTP Request Type

Retrieving of existing records GET

Creating new records POST

Removing records DELETE

Updating existing records PUT

Using these 4 HTTP Request Types a RESTful API mimics the CRUD operations (Create, Read, Update & Delete) common in transactional systems.

A defining feature of REST is that it is stateless: each call the to a RESTful Web Service is completely stand-alone: it has no knowledge of previous requests.

Implementing a RESTful Web Service in Servoy
A RESTful Web Service endpoint is created by defining a Form in a Solution and implementing one or more of the following methods to the Form:

HTTP Request Type Method name Description

GET ws_read To retrieve data

POST ws_create To create new data

DELETE ws_delete To remove data

PUT ws_update To update data

The RESTful Web Service endpoint is then available through the URL {serverUrl}/ . servoy-service/rest_ws/{solutionName}/{formName}
Multiple endpoints can be created by implementing the relevant   methods on multiple forms.ws_*

If the method for one of the HTTP Request Types is not implemented, that operation is not available on the endpoint and when attempted to be called a 
METHOD_NOT_ALLOWED (HTTP 405) error will be thrown.

The RESTful Web Service plugin does not have any client side functions or properties: all its magic happens by implementing the methods with the 
predefined  names on a form.ws_*



2 of 7

Keeping It Stateless

RESTful Web Services are to be . The RESTful Web Service plugin internally uses a pool of Headless Clients to handle multiple concurrent stateless
requests to the REStful Web Service API. As subsequent requests to the RESTful Web Service API might be handled by different headless clients in the 
pool of clients configured for the plugin, no state should be preserved in the headless client at the end of the call to the API. Therefore, make sure any state 
is cleared at the end of logic. This means at least the following:

Do not use global or form variables (or set them to default values at the end of the logic)
Do not use the solution model API
Do not alter the state of the form's UI
Do save or rollback any unsaved changes before the end of the method

Supporting GET Requests

GET Requests are supported on the endpoint if the  method is implemented. The method can return either a JavaScript primitive/arrayws_read():Object
/object or a byte array.

If the return value is a JavaScript object, it will be serialized and then placed in the body of the . HTTP Response See Returning Binary Data for more info on 
returning binary content.

If the return value of the method is null, a NOT_FOUND response (HTTP 404) will be generated.

Supporting POST Requests

POST Requests are supported on the endpoint if the  method is implemented. POST Requests require that data is ws_create(content):Object
supplied in the body of the request.

The body content of the HTTP Request is passed into the  method as first argument. ws_create() If the body Content-Type is not application/binary, it will 
be automatically converted to a JavaScript object / string.

If the body content cannot be converted to a JavaScript object / string based on the Content-Type, an INTERNAL_SERVER_ERROR response (HTTP 500) 
will be generated. If the content in the body of the HTTP Request is missing, a NO_CONTENT response will be generated (HTTP 204).

The  method supports consumption ofws_create()  multipart post requests. If the POST Request is a multipart POST, the  parameter will receive content

an Array of Objects, with each entry in the Array corresponding to one part of the multipart post, as per the example below:

Multipart post message

------WebKitFormBoundaryX6nBO7q27yQ1JNbb
Content-Disposition: form-data; name="myFileDescription"

My sample file content.
------WebKitFormBoundaryX6nBO7q27yQ1JNbb
Content-Disposition: form-data; name="myFile";
        filename="SomeRandomFile.bin"
Content-Type: application/octet-stream

..... BINARY CONTENT.....
------WebKitFormBoundaryX6nBO7q27yQ1JNbb--

content parameter value

[
   {
      name:"myFileDescription",
          // bytes content is "My sample file."
           value:byte[], 
      contentType:"text/plain"
   },
   {
      name:"myFile",
      value:byte[],
      fileName:"SomeRandomFile.bin",
      contentType:"application/octet-stream"
   }
]

The method can optionally return a JavaScript primitive/array/object or a byte array.

http://en.wikipedia.org/wiki/Representational_state_transfer#Stateless


3 of 7

If the return value is a JavaScript object, it will be serialized and then placed in the body of the   HTTP Response. See Returning Binary Data for more info on 
returning binary content.

Supporting DELETE Requests

DELETE Requests are supported on the endpoint if the ws_delete():Boolean method is implemented. The method has to return a Boolean value:

true: to indicate successful deletion. This result will generate an OK response (HTTP 200)
false: to indicate delete failure. This response will generate a NOT_FOUND response (HTTP 404)

Supporting PUT Requests

PUT Requests are supported on the endpoint if the ws_update(content):Boolean method is implemented. Data has to be supplied in the body of the 
he method HTTP request and t has to return a Boolean value:

true: to indicate successful update. This result will generate an OK response (HTTP 200) 
false: to indicate update failure. This response will generate a NOT_FOUND response (HTTP 404)

The body content of the HTTP Request is passed into the  method as first argument. If the body Content-Type is not application/binary, it will ws_update()
be automatically converted to a JavaScript object / string.

If the body content cannot be converted to a JavaScript object / string based on the Content-Type an INTERNAL_SERVER_ERROR response (HTTP 500) 
will be generated. If the content in the body of the HTTP Request is missing, a NO_CONTENT response will be generated (HTTP 204).

Adding Extra Data to the Request URL

Additional data can be added in the URL of the HTTP Requests. There are two variations and how they are made available in the  methods differs.ws_*

Additional URL Fragments
The base URL for each operation is .{serverUrl}/servoy-service/rest_ws/{solutionName}/{formName}

Additional URL fragments can be added to the URL like:

{serverUrl}/servoy-service/rest_ws/{solutionName}/{formName}/{someValue}/{anotherValue}

The additional URL fragments  and  will be passed into the  method as additional arguments. This means that for {someValue} {anotherValue} ws_* ws_
 and  they will be the first and second argument and for  and  they will be the 2nd and 3rd argument, as read() ws_delete() ws_create() ws_update()

these methods already have by default the content of the request as first argument.

Query Parameters 
The request URLs can also be extended with Query parameters like: {serverUrl}/servoy-service/rest_ws/{solutionName}/{formName}?
{someKey}={someValue}&{anotherKey}={anotherValue}&&{anotherKey}={anotherValue2}

If the URL contains Query parameters, these will be passed into the  method as an additional last argument. This last argument is a JavaScript object ws_*
containing all keys as properties with the values associated with the key in an Array: Object<Array<String>>

Note that if  are implemented and the  method returns any value but null or false, the RESTful Web custom endpoint restrictions ws_authenticate()
Services plugin adds a query parameter with the key  and as value the returned value of the ws_authenticate  method.ws_authenticate()

Combining Additional URL Fragments and Query Parameters 
Additional URL path elements and Query parameters can be combined in the URL (the query parameters should come after the additional URL fragments to 
make it a valid URL):

{serverUrl}/servoy-service/rest_ws/{solutionName}/{formName}/{someValue}/{anotherValue}?{someKey}={someValue}&
{someKey}={anotherValue}&&{anotherKey}={anotherValue2}

Example

A HTTP Get Request on URL {serverUrl}/servoy-service/rest_ws/myRestAPISolution/APIv1/foo/bar?
 would result in invoking the  method on form  of solution .name=John&age=30&pet=Cat&pet=Dog ws_read APIv1 myRestAPISolution

The  function will be invoked with three parameters: , , ws_read 'foo' 'bar' {name: ['John'] , age: [30] , pet: ['Cat', 'Dog'] }



4 of 7

function ws_read()
{
  for (var i = 0; arguments.length, i++) {
      if (typeof arguments[i] == 'String') { //The URL path additions are passed in as Strings
           application.output('URL Path addition: ' + arguments[i])
      } else {
           for each (var key in arguments[i]) {
                application.output('Query Parameter "' + key + '", values:  "' + arguments[i][key].join(', ') + 
'"')
           }
      }
  }
}

//outputs:
//URL Path addition: foo
//URL Path addition: bar
//Query Parameter "name", values:  "John"
//Query Parameter "age", values:  "30"
//Query Parameter "pet", values:  "Cat, Dog"

Supported Content Types & Encoding

The plugin supports the following Content Types:

JSON - application/json
XML - application/xml
binary - application/binary

Request Content-Type and Encoding

The Content-Type of the HTTP Request can be explicitly set by the caller using the  header in the HTTP Request. Optionally, the charset Content-Type
can be included in the Content-Type header to specify the encoding used. If the charset is not specified,  will be assumed.utf-8

Content-Type Header

Content-Type: application/json; charset=utf-8

For requests that specify body content ( ), if no valid Content-Type is set, the POST and PUT Requests (resp. ws_create() and ws_update() methods
plugin will try to establish the type of the content based on the first character of the content:

'{': Content-Type application/json will be assumed
'<': Content-Type application/xml will be assumed

When the Content-Type cannot be determined, an UNSUPPORTED_MEDIA_TYPE response will be generated (HTTP 415).

Response Content-Type and Encoding

By default, the plugin will respond with the same content type as used in the HTTP Request. The client calling the RESTful Web Service can request a 
different response content type by specifying the desired content type for the Response by setting the  header of the HTTP Request, for example: Accept Ac

 or cept: application/json Accept: application/binary

The response will be encoded with the  charset by default, if the response is not returning binary data.utf-8

If the encoding of the response needs to be different than the request encoding, this can be specified in the HTTP Request by setting the charset value in 
the Accept header:

Accept Header

Accept: application/json; charset=UTF-16

Returning Binary Data

The RESTful Web Services plugin supports returning binary data in GET operations. Binary data could for example be the content of a dataprovider of type 
MEDIA or the contents of a file read from disk. In this case, the body of the response will contain the actual stream of bytes.



5 of 7

1.  
2.  

Clients consuming the web service must be able to handle the binary response. When the consuming client specifies the  header, it must accept Accept app
, otherwise an UNSUPPORTED_MEDIA_TYPE (HTTP 415) response will be generated. If the consuming client did not specify the lication/binary

Content Type of the request, the binary result is returned unconditionally.

Setting Custom Headers

Custom headers can be set in the response by implementing the  method. This method can return either a string or an array of ws_response_headers()
strings of type "headerKey=headerValue". Each key/value pair will be added as Header to the HTTP Response.

Returning Custom Status Codes

While some of the HTTP Response status codes are hardcoded in the RESTful Webservices plugin, it is possible to control the HTTP Status codes from 
within the  methods. Returning a custom HTTP Status Code can be done by throwing the specific value (a number) for the HTTP Status Code.ws_*

For example, when a  call comes in for a non-existing resource, the HTTP Status Code to return would be a 'Not Found' status code, which is a ws_update
HTTP 404. Returning the 404/Not Found HTTP Status code from within a  method could be done the following way:ws_*

function ws_update() {
    //your logic here
    throw 404;
}

It is also possible to set the body content of the HTTP Response with a more elaborate message to give more context to the returned status code:

function ws_update(){
    //your logic here
    var code = plugins.http.HTTP_STATUS.SC_UNAUTHORIZED
    var message = "<?xml version=\"1.0\" encoding=\"UTF-8\"?><error><reason>access denied<
/reason><message>access token is expired</message></error>"
        throw [code, message];
}

For convenience purposes, all available HTTP Status Codes are also  under the , so instead of throwing the number 404 in the first listed HTTP Plugin
example, a more readable way would be to throw plugins.http.HTTP_STATUS.SC_NOT_FOUND

For additional explanation of all the status codes, see  on Wikipedia.List_of_HTTP_status_codes

Authentication/Authorization
By default access to any endpoint in unrestricted. The plugin supports 2 modes of implementing Authentication and authorization.

Restricting access to all endpoints based on HTTP Basic Authentication, validated against Servoy's built-in security
Restricting access per endpoint based on HTTP Basic Authentication with custom validation

Global Restrictions Based on Servoy Security

By setting the plugins server property  to a comma separated list of groups defined in the built-in security system rest_ws_plugin_authorized_groups
of Servoy, access to all endpoints is automatically restricted to users that are part of the groups in the list.

The endpoints must be called with HTTP Basic authentication to provide a username and password. The username/password supplied in the HTTP Request 
is validated against the users registered in Servoy's built-in security system and additionally against group membership. Access is denied if the user does 
not exist or the supplied password is incorrect, or the user doesn't belong to one of the specified groups.

When access is denied, an UNAUTHORIZED response is generated (HTTP 401).

Custom Endpoint Restrictions

For each endpoint custom authentication and authorization can be added by implementing the  ws_authenticate(userName, password):Object
method. If present, it will be called before performing any rest operation (ws_read, ws_create, ws_delete, ws_update) and the calls to the endpoint must be 
made with HTTP Basic Authentication to supply a username and password.

If the method returns false or null an UNAUTHORIZED response is generated (HTTP 401).

Any other return value will be added as an extra  with the key  to the incoming request.query parameter ws_authenticate

https://wiki.servoy.com/display/Serv7/HTTP_STATUS
https://wiki.servoy.com/display/Serv7/http
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes


6 of 7

JSONP support
The plugin supports so-called JSONP: a variation of JSON that allows cross domain data retrieval. The JSONP variation can be invoked by added a 
'callback' parameter to the HTTP Request URL:

{serverUrl}/servoy-service/rest_ws/{solutionName}/{formName}?callback={callbackFunctionName}

When invoked with the value "myCallback" for the 'callback' parameter, the returned JSON value will be wrapped in a function call to the  myCallback
function:

myCallback({ "hello" : "Hi, I'm JSON. Who are you?"})

Pool of Clients
To service the requests to the RESTful Web service API, the plugin creates a pool of (headless) clients. The maximum number of clients allowed can be set 
using the  property of the plugin (default value = 5).rest_ws_plugin_client_pool_size

When there are more concurrent requests than the number of clients in the pool, by default the requests will wait until a client becomes available in the pool. 
This behavior can be altered by setting the  property of the plugin. The following values are rest_ws_plugin_client_pool_exhausted_action
supported for this property:

block (default): requests will wait until a client becomes available
fail: the request will fail. The API will generate a SERVICE_UNAVAILABLE response (HTTP 503)
grow: allows the pool to temporarily grow, by starting additional clients. These will be automatically removed when not required anymore

 

Sample Solution
A sample solution is included in the Servoy distribution (servoy_sample_rest_ws.servoy), detailing how to retrieve data from the HTTP Request and to return 
a response.

More information on RESTful Web Services
See the following links for more information on RESTful Web Services:

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://www.infoq.com/articles/rest-introduction
http://www.ibm.com/developerworks/webservices/library/ws-restful/
http://home.ccil.org/~cowan/restws.pdf

API Docs

Server Property Summary
  rest_ws_plugin_authorized_groups
  rest_ws_plugin_client_pool_exhausted_action
  rest_ws_plugin_client_pool_size

Server Property Details

Servoy Cluster

The RESTful Web service plugin uses a pool of headless clients to service the requests. When operated within a Servoy Cluster, note that 
poolsize is set per Servoy Application Server.

rest_ws_plugin_authorized_groups
 

rest_ws_plugin_client_pool_exhausted_action

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://www.infoq.com/articles/rest-introduction
http://www.ibm.com/developerworks/webservices/library/ws-restful/
http://home.ccil.org/~cowan/restws.pdf


7 of 7

 

rest_ws_plugin_client_pool_size
 


	RESTful Web Services

