
1 of 10

Solution Model

In This Chapter

Purpose
What It Is
Limitations
Functionality and Basic Rules
Examples

Create
Calculations
Styles
Global Variables
Global Methods
Forms

Components
Form Variables
Form Methods
Form Parts
Beans
Buttons
Fields
Labels
Portals
Tab Panels

Relations
Value Lists
Media

Purpose

The Solution Model is a feature since Servoy version 4.1 which allows you to manipulate different kinds of objects on-the-fly through scripting. You can
perform actions such as:

Create objects and set their properties
Clone objects
Manipulate properties of existing objects
Revert objects to its original design-time state
Remove existing objects

What It Is

The Solution Model is the blueprint of your developed solution. You can modify its blueprint during runtime, but the object still needs to be actually built to
become available to the user. Compare it to building a house and where certain rules apply when you want to make changes to the already built house.

For example, if you want to change the window frames of your house, you can just remove the existing frames and replace them by new ones. However, if
you want to change the foundation of your house then you need to completely tear down your house, replace the foundation and then build up your house
again. This same analogy also applies to the Solution Model.

In Servoy there are two separate layers; the Solution Model layer (blueprint) and the runtime layer (the built version of the blueprint). In Servoy you can
change certain elements within the runtime layer without having to touch the Solution Model layer (like changing the position of a button or the font of a
label). However, if these changes are not within the blueprint and the object needs to be recreated according to the blueprint, then these changes will be lost.

It's also possible to create new instances of a form within Servoy (by using the function). These are copies of the application.createNewFormInstance()
actual house, rather than copies of the blueprint. It is not possible for the Solution Model to grab the properties of these copies, but only from the original. So
when you try to grab the new instance of a form by using the Solution Model, then it will retrieve the original form from which the new instance has been
created and not the new instance itself.

Limitations

Even though the Solution Model allows a wide variety of objects that can be manipulated, there are some limitations. The following objects are (currently) not
included:

Aggregations
Security
Databases and their structure
Solutions and modules

2 of 10

Functionality and Basic Rules

The Solution Model has certain types of functions:

Type Purpose

Clone Copies of a certain objects can be created

Create These factory functions allow you to create specific objects which can be used at properties of other objects

Get Allows you to retrieve objects to be manipulated by the Solution Model

New Allows you to create new objects to be manipulated by the Solution Model

Remove Allow you to remove existing objects

wrapMethodWithArguments Allows you to get a method, wrap it with arguments and assign it to an event.

With the Solution Model you can control different types of objects. Referring to these objects is done through so-called and consist of constants, JS Objects
properties and/or functions.

The following list shows the objects which can be controlled by the Solution Model, its corresponding and from which it needs to be JS Object JS Object
referenced from in order to use it:

Object JS Object Referenced from JS Object

Calculations JSCalculation

Styles JSStyle

Global variables JSVariable

Global methods JSMethod

Forms JSForm

Components JSComponent JSForm

Form variables JSVariable JSForm

Form methods JSMethod JSForm

Form parts JSPart JSForm

Beans JSBean JSForm

Buttons JSButton JSForm

Fields JSField JSForm

Labels JSLabel JSForm

Parts JSPart JSForm

Portals JSPortal JSForm

Tab panels JSTabPanel JSForm

Tabs JSTab JSTabPanel

Relations JSRelation

Relation items JSRelationItem JSRelation

Value lists JSValueList

Media JSMedia

Note

Manipulating solutions and modules are not applicable for the Solution Model because they are not relevant during deployment. At this point the
collection of solutions and modules have become one flat solution. Therefore, no (references to) solutions and modules can be made with the
Solution Model.

3 of 10

Components basically work as an umbrella for all objects which are referenced from the object. By retrieving an object as a component, you can JSForm
change properties which are shared by all these objects or conveniently clone the object including its referenced objects and properties. Check the examples
at components for more information.

When creating objects you need to make sure that the same object with the same name does not already exists. In this case you need to choose another
name or remove the existing object.

As explained as an analogy in a previous section, some changes made with the Solution Model have such an impact that on other existing objects, that
some of them need to be destroyed and recreated again.

By default, changes made by the Solution Model are not persistent and are only valid for the current session in which these changes are made.

Examples

This section shows some (simple) examples of how different objects can be controlled with the Solution Model. Per object you will find how to:

Create an object
Retrieve an existing object
Change a property of an object
Remove an existing object

Create

As described in a previous section, the Solution Model includes some factury functions which allow you to create certain layout object which can be used at
forms.

To create a new blue line border of width 1 and use that on an existing form:

var border = solutionModel.createLineBorder(1, 'blue');
var form = solutionModel.getForm('myForm);
form.borderType = border;

Calculations

During development, calculations can be created as stored or unstored. As soon as the name of a calculation corresponds with a database column, it
automatically becomes a stored calculation. The same rule applies for the Solution Model.

To create a new calculation with name on table of server which returns :myCalculation customers example_data 1

var calculation = solutionModel.newCalculation('function myCalculation() { return 1; }', JSVariable.INTEGER, 'db:
/example_data/customers');

To get the existing calculation on table of server :myCalculation customers example_data

var calculation = solutionModel.getCalculation('myCalculation', 'db:/example_data/customers');

To output whether or not this calculation is a stored one:

Note

A list of all these and their corresponding constants, properties and functions can be found under the node in the JS Objects SolutionModel
Solution Explorer of the Developer.

Note

Changed objects which affect a visible form but is not that form itself or any object referenced from that form should be removed (or reverted)
redisplayed.

Changed form objects any object referenced from that form should be recreated or removed (or reverted) and redisplayed.

Check the examples at forms for more information.

Note

As of Servoy version 6 a new method exists, called . By running this method in the Debug Client or the Command servoyDeveloper.save()
Console of the Developer, changes by the Solution Model are being pushed back and saved into the worspace.

4 of 10

application.output('Stored calculation: ' + calculation.isStored();

To remove existing calculation :myCalculation

solutionModel.removeCalculation('myCalculation', 'db:/example_data/customers');

Styles

To create a new stylesheet with name with a default style class for forms:myStyle

var style = solutionModel.newStyle('myStyle' 'form { background-color: transparent; }';

To get existing stylesheet :myStyle

var style = solutionModel.getStyle('myStyle')

To add a default style class for fields:

style.text += 'field { background-color: blue; }';

To remove existing stylesheet :myStyle

solutionModel.removeStyle('myStyle');

Global Variables

To create a new global variable with name of type :myGlobalVariable TEXT

var globalVariable = solutionModel.newGlobalVariable('myGlobalVariable', JSVariable.TEXT);

To get existing global variable :myGlobalVariable

var globalVariable = solutionModel.getGlobalVariable('myGlobalVariable');

To change its default value to :abc

myGlobalVariable.defaultValue = 'abc';

To remove existing global variable :myGlobalVariable

solutionModel.removeGlobalVariable('myGlobalVariable');

Global Methods

To create a new global method with name :myGlobalMethod

var globalMethod = solutionModel.newGlobalMethod('function myGlobalMethod() { currentcontroller.newRecord(); }');

To get existing global method :myGlobalMethod

var globalMethod = solutionModel.getGlobalMethod('myGlobalMethod');

To make it appear in the menu:

5 of 10

globalMethod.showInMenu = true;

To remove existing global method :myGlobalMethod

solutionModel.removeGlobalMethod('myGlobalMethod');

Forms

Forms are most commonly used with the Solution Model and have some additional functions. The following basic functions are available for this type of
objects:

Create new forms
Get existing forms
Clone an existing form
Remove an existing form
Revert an existing form to its original design-time state

To create a new form with name :myForm

var form = solutionModel.newForm('myForm');

To get existing form :myForm

var form = solutionModel.getForm('myForm');

To disable its navigator:

form.navigator = SM_DEFAULTS.NONE;

To clone existing form to cloned form :myForm myClonedForm

var form = solutionModel.getForm('myForm');
var clonedForm = solutionModel.cloneForm('myClonedForm', form);

To remove existing form :myForm

var success = history.removeForm('myForm');
if (success) {
 solutionModel.removeForm('myForm');
}

To revert existing form to its original design-time state:myForm

Note

When changing an existing form which has already been loaded, you need to refresh it before the end of the method by using controller.
. If the form is not refreshed then this will result in an error.recreateUI()

When changes are made to underlying objects which have effect on the loaded form, you need to remove (or revert) the form and and redisplay it
again. Check out the examples below on how to do this.

You also need to take the following into consideration:

when is called on a form, all elements are recreated based on the solution Model for that form. Any other runtime controller.recreateUI()
changes to the elements will be lost, like changing the style of a button or a dynamically added tab.
Any reference to form elements which have been manipulated on the form that is stored will become invalid, as the element is recreated.
Function cannot be used while a operation is underway on the form.controller.recreateUI() Drag 'n' Drop

6 of 10

var success = history.removeForm('myForm');
if (success) {
 solutionModel.revertForm('myForm');
}

Components

Components allow you to retrieve all objects which are referenced from the object. By retrieving an object as a component, you can change JSForm
properties which are shared by all these objects or conveniently clone the object including its referenced objects and properties.

To retrieve component with name :myButton

var component = form.getComponent('myButton');

To hide the element:

component.visible = true;

To retrieve all available components on the form:

var components = form.getComponents();

To change the width of all elements to :200

for (var i = 0; i < components.length; i++) {
 components[i].width = 200;
}

To clone an existing component:

solutionModel.cloneComponent('myClonedComponent', component);

Form Variables

To create a new form variable with name :myFormVariable

var formVariable = form.newFormVariable('myFormVariable', JSField.TEXT_FIELD);

To get existing form variable :myFormVariable

var formVariable = form.getFormVariable('myFormVariable');

To change its default value to :abc

Note

Before removing or reverting the form by using the Solution Model it's important to remove any active instances of this form from the history stack.

Note

You can only revert a form when it exists as a physical form created in design-time. Reverting a form which is created by the Solution Model will
result in an error.

Note

To test to what type of object the retrieved component belongs to, you need to use the JavaScript operator . For example, if you want to instanceof
find out if the component is a button, use: component instanceof JSButton

7 of 10

formVariable.defaultValue = 'abc';

To remove existing form variable :myFormVariable

form.removeFormVariable('myFormVariable');

Form Methods

To create a new form method with name :myFormMethod

var formMethod = form.newFormMethod('function myFormMethod() {controller.newRecord(); }');

To get existing form method :myFormMethod

var formMethod = form.getFormMethod('myformMethod');

To make it appear in the menu:

globalMethod.showInMenu = true;

To remove existing form method :myFormMethod

form.removeFormMethod('myFormMethod');

Form Parts

To create a new body:

var part = form.newPart(JSPart.BODY, 20);

To retrieve the existing body part:

var part = form.getPart(JSPart.BODY);

To change its background to white:

part.background = 'white';

To remove the existing body part:

form.removePart(JSPart.BODY);

Beans

To create a tree view with name :myBean

var bean = form.newBean('myBean', 'com.servoy.extensions.beans.dbtreeview.DBTreeView', 200, 200, 300, 300);

To get existing bean :myBean

form.getBean('myBean');

To change its anchoring to top, left and bottom:

8 of 10

bean.anchors = SM_ANCHOR.NORTH | SM_ANCHOR.WEST | SM_ANCHOR.SOUTH;

To remove existing bean :myBean

form.removeBean('myBean');

Buttons

To create a new button with name and text and attaching global method to it:myButton Text myGlobalMethod

var globalMethod = solutionModel.getGlobalMethod('myGlobalMethod');
var button = form.newButton('Text', 0, 0, 80, 20, globalMethod);
button.name = 'myButton';

To get existing button :myButton

var button = solutionModel.getButton('myButton');

To change its height to :30

button.height = 30;

To remove existing button :myButton

form.removeButton('myButton');

Fields

To create a new text field with name with form variable as its dataprovider:myField myFormVariable

var formVariable = form.getFormVariable('myFormVariable');
var field = form.newField(formVariable, JSField.TEXT_FIELD, 0, 0, 100, 200);
field.name = 'myField';

To get existing field :myField

var field = form.getField('myField');

To change its display type to a :text area

field.displayType = JSField.TEXT_AREA;

To remove existing field :myField

form.removeField('myField');

Labels

To create a new label with name with text :myLabel Text

var label = form.newLabel('Text', 0, 0, 100, 20);
label.name = 'myLabel';

To get existing label :myLabel

9 of 10

var label = form.getLabel('myLabel');

To change its horizontal alignment to :center

label.horizontalAlignment = SM_ALIGNMENT.CENTER;

To remove existing label :myLabel

form.removeLabel('myLabel');

Portals

To create a new portal with name based on relation :myPortal myRelation

var relation = solutionModel.getRelation('myRelation');
var portal = form.newPortal('myPortal', relation, 0, 0, 500, 500);

To get existing portal :myPortal

var portal = form.getPortal('myPortal');

To make it resizable:

portal.resizable = true;

To remove existing portal :myPortal

form.removePortal('myPortal');

Tab Panels

To create a new tab with name :myTabPanel

var tabPanel = form.newTabPanel('myTabPanel', 0, 0, 500, 500);

To get existing tab panel :myTabPanel

var tabPanel = form.getTabPanel('myTabPanel);

To add a new tab with name based on relation :myTab myRelation

var relation = solutionModel.getRelation('myRelation');
var tab = tabPanel.newTab('myTab', 'Text', myRelatedForm, relation);

To remove existing tab panel :myTabPanel

form.removeTabPanel('myTabPanel');

Relations

To create a new relation with name between tables and :myRelation customers orders

var relation = solutionModel.newRelation('myRelation', 'db:/example_data/customers', 'db:/example_data/orders',
JSRelation.INNER_JOIN);

10 of 10

To get existing relation :myRelation

var relation = solutionModel.getRelation('myRelation');

To create new a new relation item based on fields and :id customer_id

relation.newRelationItem('id', '=', 'customer_id');

To remove existing relation :myRelation

solutionModel.removeRelation('myRelation');

Value Lists

To create a new value list with name :myValueList

var valueList = solutionModel.newValueList('myValueList', JSValueList.CUSTOM_VALUES);

To get existing value list :myValueList

var valueList = solutionModel.getValueList('myValueList');

To set custom values for the value list:

valueList.customValues = '1\n2';

To remove existing value list :myValueList

solutionModel.removeValueList('myValueList');

Media

To create new media with name :myMedia

var media = solutionModel.newMedia('myMedia', plugins.http.getMediaData('http://www.servoy.com/images
/logo_servoy.gif'));

To get existing media :myMedia

var media = solutionModel.getMedia('myMedia');

To change its content:

media.bytes = plugins.http.getMediaData('http://servoy.com/images/headerimages/open_source.jpg');

To remove existing media :myMedia

solutionModel.removeMedia('myMedia');

Note

For all examples of functions, properties and functions, check out the Programming Reference Guide on the Wiki or select one form the Solution
Explorer in the Developer and choose .Move sample

	Solution Model

