
1 of 6

Annotating JavaScript Using JSDoc
The Script Editor in Servoy Developer offers full code completion (a.k.a. IntelliSense or autocomplete) and designtime code validation.

As JavaScript has no means to declare the type of a variable, the type of a function parameter or the return type of a function, it is not possible to get 100%
correct results by just analyzing the JavaScript code itself.

In order to improve the quality of the code completion and code validation, functions and variables can be annotated with JSDoc to provide the missing
information.

Besides the benefits for code completion and validation, adding JSDoc to JavaScript code also improves the readability of the code for other developers, as
JSDoc allows for adding more info than just the typing info.

 Using the hosted on it is also possible to generate HTML documentation of the JavaScript code in a Solution, based on the JSDoc plugin ServoyForge
JSDOc supplied.

In This Chapter

What Does JSDoc Consist Of
Where Does JSDoc Come from and which Syntax Is Supported
Working with JSDoc in the Script Editor
JSDoc Tags
Type Expressions
Type Casting

What Does JSDoc Consist Of

The JSDoc syntax consists of a set of JSDoc tags, contained in JSDoc comments.

JSDoc comments are like multi-line JavaScript comments, but the opening tag is '/**' instead of just '/*'

Some of the JSDoc tags require a Type Expression as one of the parameters and most allow for an extra description behind the tag and it's parameters.

Example

/**
 * A simple demo function that outputs some text
 * @author Tom
 * @private
 *
 * @param {String} text The text that will be written to the output
 * @throws (String)
 * returns Boolean
 *
 * @example try {
 * saySomething('Hello world!');
 * } catch(e) {
 *
 * }
 *
 * @see application.output
 * @since 1.0
 * @version 1.0.1

 * - Added some more JSDoc tags for the demo
 */
function saySomething(text) {
 if (text == null || text.length == 0) {
 throw "Invalid input!"
 }
 application.output(text);
 return true;
}

Where Does JSDoc Come from and which Syntax Is Supported

JSDoc is not a official standard, but the defacto standard is defined by the project. The other major definer of JSDoc is JSDoc Toolkit Google Closure
. Compiler's support for JavaScript annotation

https://www.servoyforge.net/projects/jsdoc
https://www.servoyforge.net
http://code.google.com/p/jsdoc-toolkit/
http://code.google.com/closure/compiler/docs/js-for-compiler.html
http://code.google.com/closure/compiler/docs/js-for-compiler.html

2 of 6

The JSDoc syntax supported by the Servoy Developer IDE is derived from the and JSDoc Toolkit Google Closure Compiler's support for JavaScript
, plus some custom Servoy extensions.annotation

See and below for the supported tags and their syntax.JSDoc Tags Type Expressions

Working with JSDoc in the Script Editor

As mentioned in the intro, the Script Editor in Servoy Developer utilizes JSDoc to improve the quality of code completion and validation.

The Script Editor and Servoy Developer in general also facilitates the creation of JSDoc comments:

When creating functions and variables through the wizards in the Solution Explorer or the Properties pane linked to the Form Editor, Servoy will
automatically generate the variable or function with JSDoc comments.
When manually creating variables and functions inside the Script Editor, using code completion it is possible to select Script Templates for new
variables or functions that include the JSDoc comments
When working with existing variables and functions, the SCript Editor has a function to automatically generate the JSDoc comments for the
selected variable or function. This function can be accessed through:

Alt-Shift-J
Context Menu > Source > Generate Element Comments

Inside the JSDoc comment, the Script Editor offers code completion for the available JSDoc tags if the "@" sign is entered and then code
completion is requested (Control-Space)

When hovering over a reference to the variable of function somewhere in the Solution, the tooltip will show the JSDoc for the variable/function.

 Note that the Script Editor will always generate a JSDoc comment block with a @properties tag when saving the Script editor, if no JSDoc comments
have been defined. The @properties tag is a tag containing information for Servoy to provide proper linking and versioning.

JSDoc Tags

The following JSDoc tags are supported in the Script Editor. This means that the JSDoc tags will be rendered without the "@" sign when hovering over a
reference tot he function or variable.

The developer can add any custom tag to the JSDoc comment, but besides being shown in the tooltip when hovering over references it will not do anything.

Tag Syntax & Examples Context Impact Description

@Allow
ToRunI
nFind

@AllowToRunInFind function Determines if the function will be executes in FindMode when
used as an event handler

Custom Servoy JSDoc tag to annotate a function that it can be run if the
Form on which the function is ran is in FindMode

@auth
or

@author userName function,
variable

none Indicates the author of the code

@const
ructor

@constructor function This will show a different icon on the Script Outline view and
suppresses warnings related to inconsistent return values
when building in a fail-save to calling a constructor function
without the new keyword

@depr
ecated

@deprecated description function,
variable

Accessing a deprecated variable or calling a deprecated
function will produce a builder marker in Servoy Developer

Indicates that the function or variable is obsolete or has been replaced and
should be used anymore.
Use an (optional) description to provide reasoning and possible alternatives

@enum @enum

Example:
/**
 * @enum
 */
var TEAM_COLORS = {
 RED : 1,
 GREEN : 2,
 BLUE : 3
}

variable none in scripting, but Servoy Relations Variables that contain a JavaScript Object with key/value pairs and are
tagged as enumeration using the @enum tag have special meaning in
Servoy relations: The relation editor allows selecting one of the keys of the
object for the primary 'key' in a relation item.

Only String and Number values are supported. They are treated as
constants, meaning that changes to the values made through scripting are
not supported: if the value is altered, already loaded relations will not be
updated accordingly.

@exam
ple

@example function,
variable

none Tag allowing to provide some sample code how to use the function or
variable. Multiline content is possible by including "
" as line-breaks
behind each line of content.
To have more control over the formatting of the sample code, the entire
sample code can be wrapped in pre-tags: <pre>samplecode</pre>
Multiple @example tags can be defined for each function or variable

@overr
ide

@override functions none Tag to describe that the function is overriding an equally named function on
a super form

@param @param {Type} name
parameterDescription

function Builder markers will be generated in Servoy Developer if the
function is called with values for the parameters that do not
match the specified types

Describe function parameters.
The tag can be followed by a between {} and must have a Type Expression
name.
The "name" must match the name of one of the parameters in the function
declaration.
When the parameter is an unknown Java object (so not a JavaScript object)
or there should be any type information assigned to the parameter, the type
expressing can be omitted.

@public @public function,
variable

Explicitly marks a member as public API. A member that is not marked as either public, private or protected is
implicitly considered as public.

Cannot be used in combination with @private or @protected

http://code.google.com/p/jsdoc-toolkit/
http://code.google.com/closure/compiler/docs/js-for-compiler.html
http://code.google.com/closure/compiler/docs/js-for-compiler.html

3 of 6

@private @private function,
variable

Accessing a private variable/function from outside the scope
in which it is declared will generate a builder marker in
Servoy Developer

Annotates a variable or function as accessible only from within the file in
which it is declared

Cannot be used in combination with @public or @protected

@prote
cted

@protected function,
variable

Accessing a protected variable/function from outside the
scope in which it is declared or a child scope will generate a
builder marker in Servoy Developer

Annotates a variable or function as accessible from within the same file in
which it is declared and all files that extend this file

Cannot be used in combination with @public or @private

@return @return {Type} function The specified type is used by the build process to determine
the correctness of the code that uses the returned value and
offer Code Completion

Annotates the type of the returned value.
If the function does not return any value, omit the @return tag.
The tag must be followed by a Type Expression

@retur
ns

@returns {Type} function see @return alias for @return

@see @see seeDescription function,
variable

none Tag to provide pointers to other parts of the code that are related

@since @since versionDescription function,
variable

none Tag to provide information about in which version of the code the variable or
function was introduced

@Supp
ressWa
rnings

@SuppressWarnings
([deprecated], [hides],
[wrongparameters],
[undeclared], [unused],
[nls])

function Stop the generation of builder markers in Servoy Developer
for the specified warnings

deprecated - markers related to referencing
deprecated API
hides - markers related to declaring members that hide
similar named members elsewhere in the scope
wrongparameters - markers related to calling functions
with different type of parameters than specified by the
function
undeclared - markers related to referencing members
for which the build system cannot find a declaration
unused - marker related to a member that is not being
used
nls - markers related to hardcoded text when builder
markers for non externalized strings are enabled
(disabled by default, see window > Preferences >
JavaScripts > Errors/Warnings > Externalized Strings)

Custom Servoy JSDoc tag to suppress builder markers of a certain type
within a function

@this @this {Type} function The specified type is used by the build process for the "this"
object available inside functions to determine the correctness
of the code that uses the object and offer Code Completion

Tag to specify the type of the "this" object inside functions.
The tag must be followed by a Type Expression

@throws @throws {Type} function none Tag to describe the type of Exceptions that can be raised when the function
is called.
Multiple @throws tags are allowed.
The tag must be followed by a Type Expression

@type @type {Type} variable,
inline
variable,
(function*)

The specified type is used by the build process to determine
the correctness of the code that uses the variable and offer
Code Completion

Tag to specify the type of the value that a variable can hold.
The tag must be followed by a Type Expression
On functions the @type tag is an alternative for @returns, but only one of
the two can be used

@typed
ef

@typedef {Type} variables Variables tagged using the @typedef JSDoc tag are
considered definitions of types. These types can be used as
type in other JSDoc tags by using the name of the variable

@versi
on

@version
versionDescription

function,
variable

none Tag to provide information about the version of the code

 A file can be either a Form JavaScript file or the globals JavaScript file. Only Form can be extended, thus the @protected tag is not relevant for
annotating variables and functions within the globals JavaScript file

Type Expressions

Type Expressions are used to describe the type and/or structure of data in the following cases:

Use case Tag Example

function parameters @param /**
 * @param {String} value Just some string
value
 */
function demo(value) {

....

}

function return type @return
@returns

/**
 * @param {String} value Just some string
value
 * @return { {x:Number, y:Number}}
 */
function demo(value) {
 ...
 return {x: 10, y: 20}
}

4 of 6

functions exceptions @throws /**
 * @throws {Number}
 */
function demo(value) {
 ...
 throw -1;
}

variables @type /**
 * @type {XML}
 */
var html = <html>
 <head>
 </head>
 <body>
 Hello World!
 </body>
</html>

A Type Expression is to always be surrounded by curly braces: {typeExpression}. Note that when using the Object Type expression variation that start and
stops with curly braces as well, this results in double opening and closing braces.

Expression
name

Syntax example Context Comments

Named type {String}
{Boolean}
{Number}
{XML}
{XMLList}
{RuntimeForm}
{RuntimeLabel}
{JSButton}
{JSForm}

@param,
@return,
@type,
@throws

The complete list of available types can be seen by
triggering Code Completion inside the curly braces in
the Script Editor

Any type {*}
Any type of value

@param,
@return,
@type,
@throws

This can be used to suppress some builder markers
related to apparent type inconsistencies.

OR type {String|Number}
Either a String or a Number

@param,
@return,
@type,
@throws

REST type {...String}
Indicates one or more String values

@param Can only be used for the last declared parameter of a
function

Array type {String[]}
{Array<String>}
An array containing just string values

{Array<String|Number>}
 An array containing string and/or number values

{Array<Byte>}
An array containing just bytes

@param,
@return,
@type,
@throws

Object type {Object<String>}
An object where the value for each key is a String value

{Object<Array<String>>}
An object where the value for each key contains arrays that in turn contains
only string values

{ {name:String, age:Number}}
An object with a "name" and "age" key, with resp. a string and number value

@param,
@return,
@type,
@throws

Object type
with optional
properties

{ {name:String, [age]:Number}}
{ {name:String, age:Number=}}
An object with a "name" and optional "age" key, with resp. a string and number
value

@param,
@return,
@type,
@throws

Function type {function(String, Number, Array<Object>):Boolean}
Between the bracket of the function the types of the function parameters can
be sprecified. The functions returnType can be specified after the closing
bracket, prefixed by a colon

@param,
@return,
@type

JSFoundset
type

{JSFoundset<db:/udm/contacts>} 1
A JSFoundSet from the contacts table of the udm database server

{JSFoundset<{col1:String, col2:Number}>}
A JSFoundSet with dataproviders "col1" and "col2" with resp. string and
number types

@param,
@return,
@type

5 of 6

JSRecord type {JSRecord<db:/udm/contacts>} 1

A JSRecord from the contacts table of the udm database server

{JSRecord<{col1:String, col2:Number}>}
A JSFoundSet with dataproviders "col1" and "col2" with resp. string and
number types

@param,
@return,
@type

JSDataSet type {JSDataSet<{name:String, age:Number}>}
An JSDataSet with a "name" and "age" column, with resp. a string and number
value

@param,
@return,
@type

RuntimeForm
type

{RuntimeForm<superFormName>}
A RuntimeForm that extends superFormName

@param,
@return,
@type

1 the value in between <..> is the datasource notation that is built up of the database server and tablename: db:/{serverName}/{tableName}

Type Casting

JSDoc can be used inside JavaScript code to specify the type of variables. This can be necessary if the correct type can't be automatically derived.

An example of such scenario is for example the databaseManager.getFoundSet() function. This function returns an object of the generic type JSFoundSet.
In most if not all scenario's however, it is known for which specific datasource the JSFoundSet was instantiated and the foundset object will be used as such
in code, accessing dataproviders on the foundset object that are specific to the datasource. This will result in builder markers, because those dataproviders
are not know on the generic JSFoundSet type. Through JSDoc casting however, it's possible to specify the type of the foundset object more specifically

/**@type {JSFoundset<db:/udm/contacts>}*/
var fs = databaseManager.getFoundSet('db:/udm/contacts')

The difference between Code Completion with and without Type Casting can be seen in the two screenshots below. whent he Type casting is omitted, the
offered Code Completion related only to the generic JSFoundset type. With the Type Casting in place, all the dataproviders of the specific datasource are
also available in Code Completion:

With Type Casting:

Without Type Casting:

Another example is entries in Objects and/or Arrays: if every entry is of the same type, this can be specified on the Object/Array declaration using JSDoc, for
example:

/**@type {Array<String>}*/
var myStringArray = []

If the Object/Array contains entries of different types, the type of the entries cannot be specified when declaring the Object/Array, or only a more generic type
can be specified.

An example of a generic type would be RuntimeComponent, which is the super type for RuntimeLabel, RuntimeField etc. RuntimeComponent defines all the
properties and methods that all the other RuntimeXxxx types have in common. When the need arises to call methods or set properties that are specific to a
specific RuntimeXxx type, the generic type can be casted:

6 of 6

if (elements[1] instanceof RuntimeLabel) {
 /**@type{RuntimeLabel}*/
 var myLabel = elements[1]
 var elementNames = myLabel.getLabelForElementName() //Calling method specific for labels
}

Type Casting can only be performed on variable declarations. It is not possible switch the type of an already declared variable later in code

	Annotating JavaScript Using JSDoc

